List of Papers
The list of papers below is an (incomplete) cross-section of the literature that Prof. Cornish and Prof. Yunes have found useful in research over the years. We list these papers here for graduate students to have easy access to them. We will pick papers from this list when selecting student research presentations for group meetings. The date each paper was last presented as well as the presenter are shown below each paper, if applicable. A chronological list of these presentations can be found at the bottom of this page.
Gravitational Wave Detections
- Observation of Gravitational Waves from a Binary Black Hole Merger - B. P. Abbott
et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102
(2016). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
- 10/13/2016 - Margaret Millhouse
- Properties of the Binary Black Hole Merger GW150914 - B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116 241102
(2016). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.241102
- 10/13/2016 - Margaret Millhouse
- GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence - B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116 241103 (2016). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.241103
Gravitational Wave Theory
- Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation
and Geometrical Optics - Isaacson, Phys. Rev. 166, 1263-1271 (1968). http://link.aps.org/doi/10.1103/PhysRev.166.1263
- 9/8/2016 - Alexander Saffer
- Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the
effective stress tensor - Isaacson, Phys. Rev. 166, 1272-1280 (1968). http://link.aps.org/doi/10.1103/PhysRev.166.1272
- 9/8/2016 - Alexander Saffer
- Gravitational radiation and motion of two point masses - Peters, Phys. Rev. 136, B1224-B1232 (1964).http://link.aps.org/doi/10.1103/PhysRev.136.B1224
- Gravitational Radiation from Point Masses in a Keplerian Orbit - Peters and Mathews,
Phys. Rev. 131, 435-440 (1963).http://link.aps.org/doi/10.1103/PhysRev.131.435
- 1/28/2014 - Alexander Saffer
- Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions - Burke, J. Math. Phys. 12, 401 (1971). http://dx.doi.org/10.1063/1.1665603
- The generation of gravitational waves. I - Weak-field sources - Kovacs and Thorne, Astrophysical Journal , 200, 245-262 (1975)http://adsabs.harvard.edu/abs/1975ApJ...200..245T
- The generation of gravitational waves. II - The postlinear formalism revisited - Kovacs and Thorne. Astrophysical Journal, 215, 624-635 (1977). http://adsabs.harvard.edu/abs/1977ApJ...215..624C
- The generation of gravitational waves. III - Derivation of bremsstrahlung formulae - Kovacs and Thorne. Astrophysical Journal, 217, 252-280 (1977). http://adsabs.harvard.edu/abs/1977ApJ...217..252K
- The generation of gravitational waves. IV - Bremsstrahlung - Kovacs and Thorne. Astrophysical Journal, 222, 62-85 (1978).http://adsabs.harvard.edu/abs/1978ApJ...224...62K
- Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries - Apostolatos et al. Physical Review D, 49, 6274-6297 (1994). http://link.aps.org/doi/10.1103/PhysRevD.49.6274
- Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity - Wagoner and Will. Phys. Rev. Lett. 30, 884-886 (1973).http://link.aps.org/doi/10.1103/PhysRevLett.30.884
- Post-Newtonian gravitational radiation from orbiting point masses - Wagoner and Will. Astrophys.J. 210 (1976) 764-775.http://adsabs.harvard.edu/doi/10.1086/154886
- Post-Newtonian gravitational bremsstrahlung - Turner and Will. Astrophys.J. 220 (1978) 1107-1124.http://adsabs.harvard.edu/doi/10.1086/155996
- On the gravitational field of a mass point according to Einstein's theory - Schwarzschild. Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1916 (1916) 189-196. http://arxiv.org/abs/physics/9905030
- Global Structure of the Kerr Family of Gravitational Fields - Carter. Physical Review,
vol. 174, Issue 5, pp. 1559-1571.http://adsabs.harvard.edu/abs/1968PhRv..174.1559C
- 11/13/2012 - Shine Roshan
- Dynamical horizons and their properties - Ashtekar. Phys.Rev. D68 (2003) 104030.http://link.aps.org/doi/10.1103/PhysRevD.68.104030
- Determining the Hubble constant from gravitational wave observations - Schutz. Nature 323 (1986) 310-311.http://www.nature.com/nature/journal/v323/n6086/abs/323310a0.html
- Nonlinear nature of gravitation and gravitational-wave experiments - Christodoulou. Phys. Rev. Lett. 67, 1486-1489 (1991).http://link.aps.org/doi/10.1103/PhysRevLett.67.1486
- Multipole Expansion of Gravitational Radiation - Thorne. Reviews of Modern Physics, 52, 299-340 (1980).http://link.aps.org/doi/10.1103/RevModPhys.52.299
- Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown - Flanagan and Hughes. Phys. Rev. D 57, 4535-4565 (1998). http://link.aps.org/doi/10.1103/PhysRevD.57.4535
- Measuring gravitational waves from binary black hole coalescences. II. The waves' information and its extraction, with and without templates. Flanagan and Hughes. Phys. Rev. D 57, 4566-4587 (1998). http://link.aps.org/doi/10.1103/PhysRevD.57.4566
- Gravitational waves from merging compact binaries: How accurately can one extract
the binary’s parameters from the inspiral waveform? Cutler and Flanagan. Phys. Rev.
D 49, 2658 (1994). http://journals.aps.org/prd/abstract/10.1103/PhysRevD.49.2658
- 2/25/2014 - Devin Hansen
- The Gravitational Wave Background from Cosmological Compact Binaries. Farmer and Phinney. Mon.Not.Roy.Astron.Soc. 346 (2003) 1197. http://arxiv.org/pdf/astro-ph/0304393.pdf
- Gravitational Waves in General Relativity. Bondi. Nature 186, 4724, pp. 535 (1960).
http://adsabs.harvard.edu/abs/1960Natur.186..535B
- 2/1/2017 - Dimitry Ayzenberg
- Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated
Systems. Bondi, van der Burg, Metzner. Proc. Roy. Soc. Lon. A 269, 1336, pp. 21-52
(1962). http://adsabs.harvard.edu/abs/1962RSPSA.269...21B
- 2/1/2017 - Dimitry Ayzenberg
- Observing binary inspiral in gravitational radiation: One interferometer. Finn and
Chernoff. Phys. Rev. D 47, 2198 (1993). http://dx.doi.org/10.1103/PhysRevD.47.2198
- 3/22/2017 - Nicholas Loutrel
- Gravitational waves from inspiraling compact binaries: Validity of the stationary
phase approximation to the Fourier transform. Droz, Knapp, Poisson, and Owen. Phys.
Rev. D 59, 124016 (1999). http://dx.doi.org/10.1103/PhysRevD.59.124016
- 3/22/2017 - Nicholas Loutrel
General Relativity
- The Gravitational equations and the problem of motion. Einstein-Infeld-Hoffman paper.
Annals Math. 39 (1938) 65-100.http://www.jstor.org/stable/1968714
- 11/8/2013 - Dimitry Ayzenberg
- The Formal Foundation of the General Theory of Relativity. Einstein. Sitzungsber.Preuss.Akad.Wiss.Berlin
(Math.Phys.) 1914 (1914) 1030-1085 http://en.wikisource.org/wiki/The_Foundation_of_the_Generalised_Theory_of_Relativity
- 3/25/2014 - Sourav Sen Choudhury
- On Continued Gravitational Contraction. Oppenheimer and Snyder. Phys. Rev. 56, 455-459
(1939).http://adsabs.harvard.edu//abs/1939PhRv...56..455O
- 9/30/2014 - Margaret Millhouse
- Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? EPR. Phys. Rev. 47, 777-780 (1935).http://link.aps.org/doi/10.1103/PhysRev.47.777
- Slowly Rotating Relativistic Stars. I. Equations of Structure. Hartle and Thorne.
Astrophysical Journal, vol. 150, p.1005.http://adsabs.harvard.edu/abs/1967ApJ...150.1005H
- 10/19/2015 - Andrew Sullivan
- Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars. Hartle. Astrophysical Journal, vol. 153, p.807.http://adsabs.harvard.edu/abs/1968ApJ...153..807H
- Slowly Rotating Relativistic Stars. III. Static Criterion for Stability. Hartle. Astrophysical Journal, vol. 158, p.719.http://adsabs.harvard.edu/abs/1969ApJ...158..719H
- Slowly-Rotating Relativistic Stars.IV. Rotational Energy and Moment of Inertia for Stars in Differential Rotation. Hartle. Astrophysical Journal, vol. 161, p.111. http://adsabs.harvard.edu/abs/1970ApJ...161..111H
- Slowly rotating relativistic stars. V - Static stability analysis of N = 3/2 polytropes. Hartle. Astrophysical Journal, vol. 198, June 1, 1975, pt. 1, p. 467-476. http://adsabs.harvard.edu/abs/1975ApJ...198..467H
- Slowly Rotating Relativistic Stars.VI. Stability of the Quasiradial Modes. Hartle. Astrophysical Journal, vol. 176, p.177.http://adsabs.harvard.edu/abs/1972ApJ...176..177H
- Slowly Rotating Relativistic Stars. VIII. Frequencies of the Quasi-Radial Modes of an N = 3/2 Polytrope. Hartle. Astrophysical Journal, Vol. 196, pp. 653-660. http://adsabs.harvard.edu/abs/1975ApJ...196..653H
- Slowly Rotating Relativistic Stars. IX: Moments of Inertia of Rotationally Distorted Stars. Hartle. Astrophys.Space Sci. 24 (1973) 385-405. http://www.springerlink.com/content/51k40157t2808549
Modified Gravity Theories
- Chern-Simons modification of general relativity. Jackiw and Pi. Phys.Rev. D68 (2003) 104012.http://prd.aps.org/abstract/PRD/v68/i10/e104012
- Behavior of Friedmann-Robertson-Walker cosmological models in scalar - tensor gravity. Eardley. Annals Phys. 241 (1995) 128-151.http://www.sciencedirect.com/science/article/pii/S0003491685710585
- Dipole gravitational radiation in Rosen's theory of gravity - Observable effects in the binary system PSR 1913+16. Will and Eardley. Astrophys.J. 212 (1977) L91-L94. http://adsabs.harvard.edu/doi/10.1086/182382
- Gravitational Radiation, Close Binary Systems, And The Brans-dicke Theory Of Gravity. Will and Zaglauer. Astrophys.J. 346 (1989) 366. http://adsabs.harvard.edu/doi/10.1086/168016
- Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity. Will and Zaglauer. Phys.Rev. D85 (2012) 064041. http://prd.aps.org/abstract/PRD/v85/i6/e064041
Tests of General Relativity
- Post-Newtonian metric for a general class of scalar tensor gravitational theories and observational consequences. Astrophys.J. 161 (1970) 1059-1067. http://adsabs.harvard.edu/doi/10.1086/150607
- Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys.J. 177 (1972) 757. http://adsabs.harvard.edu/abs/1972ApJ...177..757W
- Theoretical Frameworks for Testing Relativistic Gravity. I. Foundations Astrophysical
Journal, vol. 163, p.595.http://adsabs.harvard.edu/abs/1971ApJ...163..595T
- 2/15/2013 - Laura Sampson
- Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect Astrophysical Journal, vol. 163, p.611. http://adsabs.harvard.edu/abs/1971ApJ...163..611W
- Tensor multiscalar theories of gravitation. Damour and Esposito-Farese. Class.Quant.Grav. 9 (1992) 2093-2176.http://iopscience.iop.org/0264-9381/9/9/015/
- Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parameterized
Post-Einsteinian Framework. Yunes and Pretorius. Phys.Rev. D80 (2009) 122003. http://iopscience.iop.org/0264-9381/9/9/015/
- 10/27/2016 - Nicolas Yunes
- Upper Limits on the Isotropic Gravitational Radiation from Pulsar Timing Analysis.
Hellings and Downs. Astrophysical Journal, vol.265, p.L39-L42. http://adsabs.harvard.edu/doi/10.1086/183954
- 10/11/2013 - Alexander Saffer
- Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity. Eardley
et al. Phys. Rev. Lett. 30, 884 (1973). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.30.884
- 1/27/2015 - Nicholas Loutrel
Gravitational Wave Astrophysics
- An Overview of gravitational wave sources. Cutler and Thorne. To appear in the proceedings of Conference: C01-07-15http://arxiv.org/abs/gr-qc/0204090
- Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories. LIGO Scientific and Virgo Collaborations (Aasi, J. et al.) http://arxiv.org/abs/1304.0670
- Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based
Gravitational-wave Detectors. LIGO Scientific and Virgo Collaborations (Aasi, J. et al.) http://arxiv.org/abs/1003.2480
- 11/22/2013 - Logan O'Beirne
Post-Newtonian Theory
- General relativistic celestial mechanics of binary systems. I. The post-Newtonian
motion. Damour and Deruelle. Ann. Inst. Henri Poincaré Phys. Théor., Vol. 43, No.
1, p. 107 - 132 (1985). http://www.ihes.fr/~damour/Conferences/DamourDeruelleAIHP85.pdf
- 11/10/2016 - Cody Brown
- General relativistic celestial mechanics of binary systems. II. The post-Newtonian
timing formula. Damour and Deruelle. Ann. Inst. Henri Poincaré Phys. Théor., Vol.
44, No. 3, p. 263 - 292 (1986). http://pagesperso.ihes.fr/~damour/Conferences/DamourDeruelleAIHP86.pdf
- 11/10/2016 - Cody Brown
- Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. Will and Wiseman. Phys. Rev. D 54, 4813-4848 (1996). http://prd.aps.org/abstract/PRD/v54/i8/p4813_1
- Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. 1. Foundations. Patti and Will. Phys.Rev. D62 (2000) 124015. http://prd.aps.org/abstract/PRD/v62/i12/e124015
- Post-Newtonian theory for the common reader. Poisson and Will. Lecture notes (July 2007).http://www.physics.uoguelph.ca/poisson/research/postN.pdf
- Gravitational waves from a particle orbiting around a rotating black hole: PostNewtonian expansion. Shibata, Sasaki, Tagoshi and Tanaka, Phys.Rev. D51 (1995) 1646-1663. http://dx.doi.org/10.1103/PhysRevD.51.1646
- Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Up to O (v**8) beyond the quadrupole formula. Shibata, Sasaki, Tagoshi and Tanaka. Phys.Rev. D54 (1996) 1439-1459.http://dx.doi.org/10.1103/PhysRevD.54.1439
Black Hole Perturbation Theory
- Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations. Teukolsky. Phys. Rev. Lett. 29, 1114-1118 (1972). http://prl.aps.org/abstract/PRL/v29/i16/p1114_1
- Perturbations of a rotating black hole. 1. Fundamental equations for gravitational
electromagnetic and neutrino field perturbations. Teukolsky and Press. Astrophys.J.
185 (1973) 635-647. http://dx.doi.org/10.1086/152444
- 12/4/2012 - Katerina Chatziioannou
- Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric. Teukolsky, et a. Astrophys.J. 185 (1973) 649-674.http://dx.doi.org/10.1086/152445
- Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnetic radiation. Teukolsky et al. Astrophys.J. 193 (1974) 443-461. http://dx.doi.org/10.1086/153180
- Stability of a Schwarzschild Singularity. Regge and Wheeler. Phys. Rev. 108, 1063-1069
(1957).http://prola.aps.org/abstract/PR/v108/i4/p1063_1
- 3/1/2013 - Margaret Millhouse
- Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Zerilli and Moncrief. Phys.Rev.Lett. 24 (1970) 737-738. http://dx.doi.org/10.1103/PhysRevLett.24.737
- Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics. Zerilly and Mocrief. Phys.Rev. D2 (1970) 2141-2160. http://dx.doi.org/10.1103/PhysRevD.2.2141
- Gravitational perturbations of spherically symmetric systems. I. The exterior problem. Zerilli and Moncrief. Annals Phys. 88 (1974) 323-342. http://dx.doi.org/10.1016/0003-4916(74)90173-0
- Black Hole Normal Modes: A Semianalytic Approach. Schutz and Will. Astrophys.J. 291 (1985) L33-L36.http://adsabs.harvard.edu/abs/1985ApJ...291L..33S
- Black Hole Normal Modes: A Wkb Approach. 1. Foundations And Application Of A Higher Order Wkb Analysis Of Potential Barrier Scattering. Will and Iyer. Phys.Rev. D35 (1987) 3621. http://dx.doi.org/10.1103/PhysRevD.35.3621
- Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations. Price. Phys. Rev. D 5, 2419-2438 (1972). http://prd.aps.org/abstract/PRD/v5/i10/p2419_1
- Perturbative approach to an orbital evolution around a supermassive black hole. Mino et al. Phys.Rev. D67 (2003) 084027.http://dx.doi.org/10.1103/PhysRevD.67.084027
- Quasinormal modes of black holes and black branes. Berti, Cardoso, and Starinets.
Class.Quant.Grav. 26 (2009) 163001.http://dx.doi.org/10.1103/PhysRevD.67.084027
- 2/2/2016 - Katerina Chatziioannou
- Dynamical horizons and their properties. Ashtekar and Krishnan. Phys. Rev. D 68, 104030 (2003). http://journals.aps.org/prd/abstract/10.1103/PhysRevD.68.104030
- 3/22/2016 - Andrew Sullivan
Other Approximation Schemes
- Colliding black holes: The Close limit. Pullin et al. Phys.Rev.Lett. 72 (1994) 3297-3300.http://dx.doi.org/10.1103/PhysRevLett.72.3297
- 2/16/2016 - Katerina Chatziioannou
- On a Semi-Relativistic Treatment of the Gravitational Radiation from a Mass Thrusted into a Black Hole. Ruffinni. Prog. Theor. Phys. Vol. 66 No. 5 (1981) pp. 1627-1638. http://dx.doi.org/10.1143/PTP.66.1627
Extreme Mass-Ratio Inspirals
- Gravitational radiation from a particle in circular orbit around a black hole. 1:
Analytical results for the nonrotating case. Poisson. Phys.Rev. D47 (1993) 1497-1510. http://dx.doi.org/10.1103/PhysRevD.47.1497
- 3/3/2015 - Katerina Chatziioannou
- Gravitational radiation from a particle in circular orbit around a black hole. 2: Numerical results for the nonrotating case. Poisson et al. Phys.Rev. D47 (1993) 1511-1518. http://dx.doi.org/10.1103/PhysRevD.47.1511
- Gravitational radiation from a particle in circular orbit around a black hole. 3: Stability of circular orbits under radiation reaction. Poisson et al. Phys.Rev. D47 (1993) 5376-5388. http://dx.doi.org/10.1103/PhysRevD.47.5376
- Gravitational radiation from a particle in circular orbit around a black hole. 4: Analytical results for the slowly rotating case. Poisson et al. Phys.Rev. D48 (1993) 1860-1863. http://dx.doi.org/10.1103/PhysRevD.48.1860
- Gravitational radiation from a particle in circular orbit around a black hole. 5: Black hole absorption and tail corrections. Poisson et al. Phys.Rev. D51 (1995) 5753-5767. http://dx.doi.org/10.1103/PhysRevD.51.5753
- Gravitational radiation from a particle in circular orbit around a black hole. 6. Accuracy of the postNewtonian expansion. Poisson et al. Phys.Rev. D52 (1995) 5719-5723, Addendum-ibid. D55 (1997) 7980-7981. http://dx.doi.org/10.1103/PhysRevD.51.5753
- Gravitational waves from extreme mass ratio inspirals: Challenges in mapping the space-time of massive, compact objects. Hughes. Class.Quant.Grav. 18 (2001) 4067-4074. http://dx.doi.org/10.1088/0264-9381/18/19/314
- Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational wave emission. 2. Inspiral trajectories and gravitational wave forms. Hughes. Phys.Rev. D64 (2001) 064004. http://dx.doi.org/10.1103/PhysRevD.64.064004
- Approximating the inspiral of test bodies into Kerr black holes. Hughes. Phys.Rev. D66 (2002) 064005.http://dx.doi.org/10.1103/PhysRevD.66.064005
- Gravitational waves from a spinning particle in circular orbits around a rotating black hole. Mino, Sasaki and Tanaka. Phys.Rev. D54 (1996) 3762-3777. http://dx.doi.org/10.1103/PhysRevD.54.3762
- An Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved space-time. Quinn and Wald. Phys.Rev. D56 (1997) 3381-3394. http://dx.doi.org/10.1103/PhysRevD.56.3381
- Gravitational self-force on a particle orbiting a Kerr black hole. Barack and Ori. Phys.Rev.Lett. 90 (2003) 111101.http://dx.doi.org/10.1103/PhysRevLett.90.111101
- Radiation reaction and the self-force for a point mass in general relativity. Detweiler. Phys.Rev.Lett. 86 (2001) 1931-1934.http://dx.doi.org/10.1103/PhysRevLett.86.1931
- Confusion noise from LISA capture sources. Barack and Cutler. Phys.Rev. D70 (2004) 122002.http://dx.doi.org/10.1103/PhysRevD.70.122002
- Self-force of a scalar field for circular orbits about a Schwarzschild black hole. Detweiler and Whiting. Phys.Rev. D67 (2003) 104016.http://dx.doi.org/10.1103/PhysRevD.67.104016
- Scalar field self-force effects on orbits about a Schwarzschild black hole. Detweiler and Whiting. Phys.Rev. D70 (2004) 124018.http://dx.doi.org/10.1103/PhysRevD.70.124018
Initial Data
- Gravitational degrees of freedom and the initial-value problem. York. Phys.Rev.Lett. 26 (1971) 1656-1658.http://dx.doi.org/10.1103/PhysRevLett.26.1656
- Comparing initial data sets for binary black holes. Cook and Pfeiffer. Phys.Rev. D66 (2002) 024047.http://dx.doi.org/10.1103/PhysRevD.66.024047
- Circular orbits and spin in black-hole initial data. Cook and Pfeiffer. Phys.Rev. D74 (2006) 064011.http://dx.doi.org/10.1103/PhysRevD.74.064011
- Binary black hole initial data from matched asymptotic expansions. Yunes et al. Phys.Rev. D74 (2006) 104011.http://dx.doi.org/10.1103/PhysRevD.74.104011
Neutron Stars
- Secular instability of rotating Newtonian stars. Freidman and Schutz. Astrophys. J.
222 (1978) p.281-296. http://adsabs.harvard.edu/doi/10.1086/156143
- 10/5/2015 - Logan O'Beirne
- Gravitational waves from hot young rapidly rotating neutron stars. Owen et al. Phys.
Rev. D 58, 084020 (1998). http://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.084020
- 10/5/2015 - Logan O'Beirne
- Deformations of Accreting Neutron Star Crusts and Gravitational Wave Emission. Ushomirsky,
Cutler, and Bildsten. Mon.Not.Roy.Astron.Soc.319:902,2000. http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:astro-ph/0001136
- 3/1/2016 - Dimitry Ayzenberg
Cosmology
- TASI Lectures on Inflation. Baumann. Proceedings of the Theoretical Advanced Study
Institute in Elementary Particle Physics (2009). http://arxiv.org/abs/0907.5424
- 11/2/2015 - Nicolas Yunes
- The Primordial Density Perturbation: Cosmology, Inflation, and the Origin of Structure.
Lyth and Liddle. Cambridge University Press (2009).
- 11/2/2015 - Nicolas Yunes
- Theory of cosmological perturbations. Mukhanov, Feldman, and Brandenberger. Physics
Reports 215 (1992). http://adsabs.harvard.edu/abs/1992PhR...215..203M
- 11/2/2015 - Nicolas Yunes
Data Analysis
- Equation of state calculations by fast computing machines. Metropolis. J.Chem.Phys. 21 (1953) 1087-1092.http://dx.doi.org/10.1063/1.1699114
- Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Hastings. Biometrika 57 (1970) 97-109.http://dx.doi.org/10.1093/biomet/57.1.97
- A Bayesian Approach to the Detection Problem in Gravitational Wave Astronomy. Littenberg. Phys.Rev. D80 (2009) 063007.http://dx.doi.org/10.1103/PhysRevD.80.063007
Pulsar Timing Arrays
- Pulsar timing measurements and the search for gravitational waves. Detweiler. Astrophys.J.
234 (1979) 1100-1104.http://dx.doi.org/10.1086/157593
- 9/27/2013 - Margaret Millhouse
- Upper limits on the isotropic gravitational radiation background from pulsar timing
analysis. Hellings and Downs. ApJ Letters 265 (1983), p. L39-L42. http://adsabs.harvard.edu/abs/1983ApJ...265L..39H
- 3/1/2017 - Logan O'Beirne
Other Topics
- An Invariant Form for the Prior Probability in Estimation Problems. Proc. R. Soc. Lond. A 24 September 1946 vol. 186 no. 1007 453-461. rspa.royalsocietypublishing.org/content/186/1007/453.abstract/
- Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882-1905 (1980). http://prd.aps.org/abstract/PRD/v22/i8/p1882_1
- Actions for gravity, with generalizations: a review. Class. Quantum Grav. 11 1087 (1994). http://iopscience.iop.org/0264-9381/11/5/003
- Astrophysics of Black Holes. Novikov and Thorne. Black Holes, eds. C. DeWitt and B. DeWitt (Gordon and Breach, Paris, 1973), pp. 343-450. http://www.its.caltech.edu/~kip/scripts/PubScans/II-48.pdf
- 9/16/2014 - Dimitry Ayzenberg
Presentations
Date | Presenter | Paper |
---|---|---|
11/13/2012 | Shine Roshan | Global Structure of the Kerr Family of Gravitational Fields |
12/4/2012 | Katerina Chatziioannou | Perturbations of a Rotating Black Hole I |
2/5/2013 | Laura Sampson | Theoretical Frameworks for Testing Relativistic Gravity I |
3/1/2013 | Margaret Millhouse | Stability of a Schwarzschild Singularity |
9/27/2013 | Margaret Millhouse | Pulsar Timing Measurements and the Search for Gravitational Waves |
10/11/2013 | Alexander Saffer | Upper Limits on the Isotropic Gravitational Radiation Background from Pulsar Timing Analysis |
10/25/2013 | Nicholas Loutrel | Gravitational Radiation in the Limit of High Frequency I and II |
11/8/2013 | Dimitry Ayzenebrg | The Gravitational Equations and the Problem of Motion |
11/22/2013 | Logan O'Beirne | Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors |
1/28/2014 | Alexander Saffer | Gravitational Radiation from Point Masses in a Keplerian Orbit |
2/25/2014 | Devin Hansen | Gravitational Waves from Merging Compact Binaries |
3/25/2014 | Sourav Sen Choudhury | The Formal Foundation of the General Theory of Relativity |
9/16/2014 | Dimitry Ayzenberg | Astrophysics of Black Holes |
9/30/2014 | Margaret Millhouse | On Continued Gravitational Contraction |
1/27/2015 | Nicholas Loutrel | Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity |
3/3/2015 | Katerina Chatziioannou | Gravitational radiation from a particle in circular orbit around a black hole 1: Analytical results for the nonrotating case |
3/24/2015 | David Anderson | Scalar-Tensor Theories |
10/5/2015 | Logan O'Beirne | Secular instability of rotating Newtonian Stars & Gravitational waves from hot young rapidly rotating neutron stars |
10/19/2015 | Andrew Sullivan | Slowly Rotating Relativistic Stars. I. Equations of Structure |
11/2/2015 | Nicolas Yunes | Quantum Fluctuations And The Observed Classical Universe |
2/2/2016 | Katerina Chatziioannou | Quasinormal modes of black holes and black branes |
2/16/2016 | Katerina Chatziioannou | Colliding black holes: The close limit |
3/1/2016 | Dimitry Ayzenberg | Deformations of Accreting Neutron Star Crusts and Gravitational Wave Emission |
3/22/2016 | Andrew Sullivan | Dynamical horizons and their properties |
9/8/2016 | Alexander Saffer | Gravitational Radiation in the Limit of High Frequency I & II |
9/29/2016 | David Anderson | FLRW metric & Cosmology |
10/13/2016 | Margaret Millhouse | GW150914 Detection and Parameter Estimation |
10/27/2016 | Nicolas Yunes | Parametrized Post-Einsteinian Framework |
11/10/2016 | Cody Brown | General relativistic celestial mechanics of binary systems |
2/1/2017 | Dimitry Ayzenberg | Bondi-Sachs Mass |
3/8/2017 | Logan O'Beirne | LISA and the Hellings and Downs curve |
3/22/2017 | Nicholas Loutrel | Stationary Phase Approximation |