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Cathodoluminescence (CL) imaging and spectroscopy extends instrumental capabilities beyond
traditional SEM and BSE imaging and EDS elemental mapping and analysis. The CL signal
derives from excitation of transition metals (with d-orbitals) and Rare Earth Elements (with f-
orbitals) under an electron beam with sensitivity down to the ppm level. CL images can be
obtained on the Zeiss Supra 55 FESEM using the Variable Pressure Secondary Electron detector
(VPSE), and on the Zeiss Ultra 55 FESEM using the dedicated Delmic SPARC CL detector
system with spectrometer.

Zeiss Supra 55 VPSE: Panchromatic (gray level) CL images can be obtained on the Zeiss Supra
55 FE-SEM using the variable pressure secondary electron (VPSE) detector. Recommended
instrument parameters for obtaining these CL images are 20keV beam voltage, working distance
of 7-10 mm, and largest aperture. Relatively large format CL images can be rapidly acquired on
a millimeter scale. In addition BSE, EDS, and EBSD data may be acquired in VP mode. The
advantages of obtaining CL images in this mode are: very rapid instrumentation set up (simply
change from SE2 to VPSE mode), large imaged area format, and ease of integration with SEI

and BSE images. For details, see: Williams, T. and Bailey, F., 2006. The Photon Detector and the
Variable-Pressure Scanning Electron Microscope an Alternative Method for
Cathodoluminescence Imaging of Geologic Materials. Microscopy and Microanalysis,

CL image of quartz crystal from Yellowstone volcanics taken in VPSE mode on the Zeiss Supra
55 FESEM.



DELMIC SPARC CL Detector. Much more comprehensive CL data can be acquired on the
Zeiss Ultra 55 FESEM. This includes the ability to acquire high resolution CL images (sub-
micron scale), true color CL images using a series of RGB filters, large area CL images may be
acquired by stitching a mosaic of individual high resolution images, and spectroscopic analysis
to identify the residence of trace elements and their chemical state. Attributes of the DELMIC
system include:

e Micron-scale spatial resolution is available to map very discrete differences in
composition of materials.

e The Delmic CL detector on the Zeiss Ultra Field Emission SEM at ICAL can obtain
either panchromatic (gray scale) total emission images, or true color images can be
obtained obtaining sequential images using RGB filters.

e The spectrophotometer of the Delmic CL instrument can detect luminescence in the range
of 400- 900 nm. The spectrometer can be set to obtain optical spectra of areas of interest
(spot analysis) to determine what the elemental activator is. Conversely, if an element of
interest is known to have emissions in a specific range of wavelengths, the window can
be set to create a map of areas where only those wavelengths are observed.

e In addition, the wavelengths of certain elements are sensitive to their chemical state (e.g.,
Mn*2 vs Mn™3) so it is possible to identify and map areas of different microchemistry.

e Flat, polished samples work best for CL imaging, but grain mounts, engineered materials,
etc. can also be used.

e Large area CL images can easily be produced by obtaining a series of overlapping CL
images and using the Delmic software to stitch the images into a composite file.

e CL is widely used in imaging geologic materials (minerals, rocks, fossils) to demonstrate
changing geochemical conditions during crystallization, distinguish discrete generations
of crystal growth, demonstrate complex compositional zoning patterns or cross-cutting
relations (overgrowths, numerous vein stages), taphonomic history of fossil bones and
teeth etc. These differences in composition registered by CL may be entirely transparent
to traditional BSE imaging or EDS elemental mapping. CL images are commonly used
as guides for follow-on analytical work such as LA-ICPMS analysis of zircons and
apatites for radiometric age dating or for trace element analysis at the ppm level).

e CL is also widely used in material science, particularly in studies of semiconductors and
nanomaterial characterization (particularly materials doped with REEs). Typical
applications are trace element detection, chemical analyses, and defect mapping of
materials as part of QA/QC procedures.

e (L is also being used to characterize biological samples that are tagged with luminescent
stains or with luminescent nanoparticles.

e For more detailed information about CL, visit
https://serc.carleton.edu/research _education/geochemsheets/semcl.html



https://serc.carleton.edu/research_education/geochemsheets/semcl.html

Applications of CL Imaging and Spectroscopy Using Delmic CL
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Intricate compositional zoning patterns are evident in this false color
CL image of quartz phenocrysts from the Yellowstone Volcanics.
Image was obtained by stitching a 3x5 array of CL images. Each
image was acquired with a resolution of 1236 pixels, and acquisition
time was ~1 minute/frame. CL images may be obtained with a field of
view up to ~500 microns.

Sample from Madison Myers, image by Sara Zacher
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SEM image, CL image and optical spectrum of an Apatite grain
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