

Physics Department Staff

Margaret Jarrett Graduate coordinator

Norm Williams

Machine shop supervisor

Stephanie McLaren
Business operations manager

Shane Mayer-Gawlik Instructional lab supervisor

Physics Department Staff

MSU is home to vibrant research & academic communities

2020 Enrollment

Undergraduates: 14,817Graduate students: 1,949Total: 16,766

2020 Research Expenditures

\$167 Million

Carnegie Classification

R1: very high research activity

- One of only 131 universities in the US.
- Only R1 university in MT, ID, WY, ND, & SD.

Proposal Activity for 2019

1,100 proposals submitted \$485.9 million in awarded grants

P	hvs	ics	Courses	
Г	ııyə	163	Courses	

	Physics C	foundational	required		
423	Electromagnetism I	461	Quantum Mechanics I		
425	Electromagnetism II	462	Quantum Mechanics II		
427	Advanced Optics	441	Solid State Physics		
435	Astrophysics	442	Novel materials for Physics	/Engineering	
437	Laser Applications	475	Observational Astronomy		
501	Advanced Classical Mechanics	531	Nonlinear Optics		
506	Quantum Mechanics I	535	Statistical Mechanics		
507	Quantum Mechanics II	544	Condensed Matter Physics	I	
516	Experimental Physics	545	Condensed Matter Physics	II	
519	Electromagnetic Theory I	555	Quantum Field Theory		
520	Electromagnetic Theory II	560	Astrophysics		
523	General Relativity I	565	Astrophysical Plasma Physi	cs	
524	General Relativity II	566	Mathematical Physics I		
525	Current Topics in General Relativity	567	Mathematical Physics II		

Research Seminars

Teaching	High Energy Astrophysics	Condensed Matter Journal Club
Solid State	Heliophysics Journal Club	Optics Fundamentals
Relativity, Astronomy & Space Physics	Spectrum Lab	Quantum Optics

Additional Graduate Courses in Partner Programs

Chemistry, Materials Science, Electrical Engineering, Computer Science, Math, Statistics, ...

The Physics department is very active in research

Annual research expenditures: \$6.6 Million

Faculty by expertise

- 8 faculty members in condensed matter, optics, and quantum systems.
- 5 faculty members in astrophysics and gravity (+1 future hire).
- 4 faculty members in solar and space physics (+1 future hire).
- 2 faculty members in physics education research.

Currently 69 graduate students actively working in all four areas.

Recent News

MSU satellite launched to space station February 19, 2021

Montana State's Dana Longcope wins Arctowski Medal January 26, 2021

Nobel announcement inspires black hole researchers October 9, 2020

NASA grant will aid search for black hole origin September 25, 2020

MSU nanotech facility wins \$3 million grant September 1, 2020

Many opportunities for research in solar and space physics

Extreme UV observations of solar phenomena

Rocket-based instrumentation for solar observations

http://solar.physics.montana.edu/ kankel

Magnetohydrodynamics & solar physics

Magnetic phenomena and fields on the sun http://solar.physics.montana.edu/dana

Solar astrophysics

Magnetic reconnection and instabilities on the sun

https://physics.montana.edu/direc tory/faculty/1524495/jiong-qiu

Near-earth high-energy particle phenomena

Satellite-based high-energy particle observations https://physics.montana.edu/directory/faculty/1987181/john-sample

FP-- 1004 -0.02 0.03 0.02 0.04

Wang et al. 2019

Observing initiation and propagation of coronal mass ejections

Prof. Jiong Qiu

Research in Solar and Space Physics

John Unverferth: PhD 2020

Observing and modeling creation and evolution of hot plasma in solar flares
Prof. Dana Longcope

Hans Courier: PhD 2020

"Small" explosions
observed using rocketborne slitless
spectrograph

Prof. Charles Kankelborg

Mike Shumko: PhD 2019

Electron microbursts in Earth's radiation belt, observed by nanosatellites Prof. John Sample

- **REAL**: cube-sat; rad. belt e⁻s
- **BOOMS**: high-alt. balloon payload; rad. belt e^{-s}
- IT-SPINS: cube-sat; ionospheric imaging
 - FURST: rocket payload; FUV solar spectrograph

Research in Astrophysics and Extreme Gravity **Massive Black Holes, Star Formation, Galaxies Amy Reines**

Black Hole Mergers Research in Astrophysics and Extreme Gravity and Gravitational Waves **Neutron Stars Active Galactic Nuclei The Milky Way** and its Satellite Galaxies **Galaxies, Supermassive Black Holes Small Bodies in the** and Star Formation **Solar System**

Research in optics, condensed matter and quantum materials/systems

Levitated optomechanics

Precision measurement using quantum systems

http://www.dursolab.org/

Nano-optics & quantum materials

Quantum phenomena in low-dimensional materials

http://www.boryslab.com/

Photonic and imaging

Microwave photonics, LIDAR, & digital holography

http://spectrum.montana.edu

Quantum materials

Quantum phenomena in condensed matter

https://sites.google.com/view/ neumeier-lab-msu

Ultrafast nonlinear optics

Materials and techniques for nonlinear optics

http://physics.montana.edu/arebane/research/

Rare-earth materials for QIS

Fundamental material physics & signal processing

http://physics.montana.edu/direc tory/faculty/1524001/rufus-cone

4441444

Condensed matter theory

Unconventional superconductivity & quantum liquids

http://physics.montana.edu/ avorontsov

Magnetism and spin structures

Spin phenomena in nano-structured materials

http://physics.montana.edu/direct ory/faculty/1524200/yves-idzerda

On-campus shared-use facilities to accelerate research

Physics machine shop for custom experimental projects

Many activities for exposure to leading research

Casual social gatherings and dinners

Many opportunities to participate in community outreach

Science Center

Prof. Brian D'Urso serves on the board of directors.

Organized and run by graduate students

Space Public Outreach Team

Get paid to talk to K-12 groups about space https://spacegrant.montana.edu/spot/index.html

Women+ in Physics

(https://physics.montana.edu/research/wip/index.html)

Dedicated to creating a supportive community climate of inclusivity with a long-term goal of increasing the number of women and underrepresented genders in the field.

On-Going Projects of MSU W+iP:

- 1. Mentorship program for undergraduate and graduate students
- 2. Library of Physics books for undergraduate and graduate students

Leaders:

President: Katie Fasbender (Grad), VP: Elizabeth Vinson (undergrad)

Co-Advisors: Amy Reines (faculty), Mallory Molina (postdoc)

Tamia Towards a More Inclusive Astronomy

National organization with the goal of creating inclusive environments within physics and astronomy departments (www.tamiastronomy.org/)

Goals of TaMIA Chapter at MSU Physics:

- 1. Cultivate Discussion about inclusion and climate in the department
- Create a supportive environment for marginalized people within TaMIA meetings and the entire department

MSU Leaders (always open to new leaders):

Postdocs: Mallory Molina, Remya Nair

Grad Students: Bethany Garver, Michael Mingyar, Jessica Myron

Practical matters: approximate PhD timeline

Practical matters: financial support

Financial support

- 1. Year 1: guaranteed teaching assistantships (TAs) for the Fall, Spring and Summer semester
 - 1. 12 month appointment.
- 2. Beyond Year 1:
 - 1. TAs are reliably available for students who need them.
 - 2. We encourage you to find a research assistantship (RA).
 - 3. Financial support is available throughout your PhD.
- 3. <u>2020/2021 base stipends</u>:
 - 1. Minimum stipend: \$23,020/year

External fellowships and grants:

- 1. Discuss fellowship opportunities with the prospective PIs
 - 1. Deadlines can be in the late fall/winter of the first semester
- 2. A few example opportunities:
 - 1. Montana Space Grant Consortium Fellowships
 - 2. NSF Graduate Fellowship
 - 3. NASA FINESST
 - 4. DoD NDSEG Fellowship
 - 5. Frannie & John Hertz Foundation
 - 6. Graduate Fellowships for STEM Diversity
 - 7. Ford Foundation Fellowship Program
 - 8. See also: MSU Graduate School Fellowship Opportunities

MSU grad student receives NSF award to further refine super-cold refrigerator

Evelyn Boswell for the MSU News Service FEBRUARY 5, 2019

Montana State University physics graduate student Aaron Marsh, from left, Rufus Cone, professor of physics in the College of Letters and Science at MSU, and Josh Doherty, product development scientist at Montana Instruments, have been working together to develop a cryostat to reach temperatures near absolute zero. MSU Photo by Adrian Sanchez-Gonzalez

Practical matters: first-year expectations

Classes and teaching responsibilities

- 1. Classes:
 - 1. Fall: Classical Mechanics, Quantum I, Math Physics I
 - 2. Spring: Quantum II, E&M I, Statistical Mechanics
 - 3. You will meet with an adviser when you arrive to discuss your specific coursework plan
- 2. Teaching: 19 hrs/week
 - 1. Assignments vary (labs, grading, etc.)
- 3. Research: few hrs/week (as much as possible)

Finding a research group

- 1. Email professors with research that you find interesting now! We all want to hear from you and talk about potential projects
- 2. Get involved with research activities as soon as possible
 - 1. Use small projects to try-out a lab
 - 2. Attend weekly group meetings (ask first!)

Practical matters: housing

- On-campus: once you accept, get on the graduate student housing waiting list immediately to increase your chances of getting a spot
 - Rates: see listings on MSU FGH site
 - Officially no pets*
 - You may only apply if you have accepted an offer
 - Offer some of the best views
- 2. <u>Off-campus:</u> roommates make the rent affordable
 - Many options around campus and near downtown
 - Margaret will facilitate introductions so that you can look for housing with other first-year students

Dave's Sushi - Off Main 📆 Bozeman High School Branegan Court Montana State Barnard Hall Montana State University 👩 Montana State University:

Resources:

- 1. MSU Family and Graduate Housing Prospective Tenants
- 2. MSU Off-Campus Housing Market Place

Nelson Tower – best view in Bozeman?

Practical matters: health insurance

- 1. As a graduate student, you have full access to the Montana State University Health Services*
 - 1. Provide: primary care, pharmacy services, vaccinations, x-rays, acute care, clinical laboratory services, counseling services, etc.
 - 2. Cost:
 - 1. Basic services covered by the University Health Fee
 - 2. Additional fees may apply for prescriptions, lab-work, x-rays, etc.
- 2. In addition, you are required by MSU to have insurance:
 - 1. Affordable health insurance is available through the Montana market place (MSU's student insurance is expensive (\$385/mo)).

Additional resources

- MSU Graduate School Guidance on Healthcare
- ACA Navigator (non-profit program for choosing health insurance in Montana)
- HealthCare.gov

* Assumes a \$307.18 tax credit estimated using a \$20k/year income. Priced for a 22 y/o male; no tobacco use.

Year-round Farmer's market

Research group summaries (in alphabetical order)

Prof. Randy Babbitt's Labs w/ Drs. Rupavatharam and Ebbers

Coherent Lidar and Digital Holography

- Range-Doppler Selective Imaging and Polarimetry
- Active Coherent Imaging Through Fog
- Vibration and Through-Turbulence Imaging

Microwave Photonics

- Spatial-Spectral Holographic Signal Processors
- Broadband Signal Analysis and Geolocation
- Broadband Electro-Optics and Novel Detectors

Microwave Spectrogram

Correlators

Quantum Networks

Quantum Memory and Communications

Optically Levitated Particles

- Laser Cooling
- Precision Gyroscopy

Nano-optics of quantum materials at Montana State

New materials to harness quantum phenomena on ultra-small length scales and ultrashort timescales.

quantum sensing • quantum information science • next-generation optoelectronics fundamental many-body physics • non-equilibrium systems

Borys Lab – <u>www.boryslab.com</u> – nicholas.borys@montana.edu

Optical microscopy & spectroscopy beyond the diffraction-limit

Nano-optical

Diffraction-limited

Diffraction-limited

Nat. Commun. 6, 7993 (2015) • 2D Mater. 4, 021024 (2017)

Nature Nano. 15, 854 (2020)

 $T = 3-350 \text{ K} \bullet \Delta t \approx 30 \text{ ps} \bullet \Delta x \approx 300 \text{ nm}$

Nanoscale & ultrafast many-body physics in 2D materials

Electrically-connected atomically-thin semiconductor!

Output

PRL **119**, 087401 (2017) • ACS Nano **11**, 2115 (2017) Nature Commun. **11**, 1156 (2020) + 1 new sub.

2D material engineering for onchip quantum photonics

Strain-engineered non-classical light source in a 2D semiconductor!

Example Potential Projects

ACS Nano 13, 1284 (2019) • ACS Nano 13, 10520 (2019) J. Phys. Chem C. 124, 8000 (2020) + 1 new sub.

Atomic force & optical microscope $T = 300 \text{ K} \cdot \Delta t \approx 30 \text{ ps} \cdot \Delta x < 20 \text{ nm}$

Nano-optical quantum sensing of nanoscale magnetic moments in interfacial systems.

 Low-temperature and nano-optical investigations of laterally-confined 2D materials (i.e., graphene and hexagonal boron nitride nanoribbons).

CONE-THIEL GROUP HIGHLIGHTS

2017 Stibitz Award For Seminal & Pioneering Contributions to Quantum Memory Fellow of American Physical Society

"From 20 Hz to 200 eV" – a span of 15 orders of magnitude

- Narrowest optical lines observed in any solid For Quantum Memories & Quantum Computing
- THE source for rare earth hole burning and quantum information materials
- Dynamical processes relevant to decoherence in Quantum Information Systems
- Lasers stabilized to spectral holes to 14 Hz "a hair's breadth out of the earth moon distance" leading to applications including local oscillator in atomic clocks
- New insights from relation of band structure and ionic 4fⁿ levels impact lasers, phosphors, scintillators, and hole burning materials
- Conference organizer: Storage and Manipulation of Quantum Information in Solids; HBSM at MSU, France, and Taiwan; Physics of Quantum Electronics Jackson Hole and Snowbird

B.S., M.S., and Ph.D. graduates placed in

- Local optics industries Scientific Materials, Big Sky Lasers, Wavelength Electronics, ILX, Lattice Materials, Resonon, AdvR, Altos, New Wave, S2, FLIR, Quantel,
- Universities University of San Francisco, U. of Wisconsin-Eau Claire, USD, and MIT
- Corning, Hewlett Packard, 3M Research, Rockwell, Ball Research, and Tektronix
- National laboratory –Argonne National Laboratory

Funding DOE (Yale + MSU), NSF (MSU + Caltech + UT-Austin), Boeing, Air Force Research Lab, & others in progress

Collaborations

- Other MSU Physics and ECE groups and MSU Spectrum Lab
- Local Optics Companies (800 employees)
 - Scientific Materials Corporation of Bozeman collaboration has been highlighted nationally and in Montana
 - S2 Corporation of Bozeman 4 licensed Cone patents enable their devices
 - AdvR & Montana Instruments
- Yale, Caltech, University of Texas-Austin; Princeton and Harvard
- Groups in France, Canada, Sweden, Switzerland, Australia, and New Zealand

D'Urso Lab - Levitated Quantum Optomechanics

Techniques

- Magnetic levitation of microparticles.
- Lasers measure particle motion and manipulate particles.

Applications

- Probing the limits of quantum mechanics.
- Precision measurements of fundamental constants.
- High-sensitivity accelerometry.

Quantum and Materials Physics

Professor John Neumeier Ph.D. in Physics, UCSD Fellow, American Physical Society

1. Magnetic and Electrical Properties of Low-Dimensional Solids

Electrons in low-dimensional geometries behave differently because of strong interactions. You will study low-dimensional magnetism, superconductivity, and Luttinger-liquid behavior. You will grow *bulk* single crystals of compounds with crystal structures composed of sheets or 1D chains, characterize the compounds, and study their physical properties. *The goal is to search for new physics in new compounds*.

2. Compressibility of H₂O Ice

Ice's compressibility has only been measured at three temperatures. You will be the first to measure it from 2 K to 270 K. You will need to build a device to measure the compressibility of ice along its principal crystallographic directions. You will also grow single crystals of H₂O and D₂O ice. *The goal is to determine fundamental information about nature's most important solid.*

3. Vanadium, Niobium, and Tantalum

The crystal structures of these elements below ~250 K are unknown. You will be the first to determine their crystal structures, and to measure their physical properties in their low-temperature structures. You will purify the elements, characterize their purity, determine their low-temperature crystal structures, and measure their physical properties. *The goal is to establish fundamental knowledge regarding three elements*.

Nidever Research Group

Topics:

- The Milky Way Galaxy structure, formation and evolution
- Dwarf satellite galaxies
- Large astronomical surveys (commissioning scientist for SDSS-V)
- Small bodies in the solar system

Observations

- Ground-based imaging and multiobject spectroscopy at optical and near-infrared wavelengths
- Radio observations of neutral hydrogen gas
- Big Data Astronomy

Reines Research Group

Topics:

- Massive black holes in dwarf galaxies and the origin of black hole "seeds"
- Active Galactic Nuclei
- Extragalactic Star Formation
- Evolution of galaxies and their massive black holes

Observations:

- Multi-wavelength observations spanning radio to X-ray wavelengths
- Large survey data (e.g., SDSS) and dedicated observations (e.g., HST, Chandra, VLA, Gemini)
- Imaging and spectroscopy

Condensed Matter Theory at Montana State

 New states of quantum matter e.g. Phase Crystal

$$\Delta(x,y) = \Delta e^{i\chi(x,y)}$$

$$\chi(x,y)$$

$$\chi(x,y)$$

- new symmetries
- new quasiparticles

Fun things

- challenging and beautiful math
- use of advanced Quantum / E&M / Stat mech
- exposure to the large field of Solid State Physics

- Spatially inhomogeneous condensates
- Co-existence and interaction of Superconductivity and Magnetism
- Non-equilibrium processes in quantum liquids: transport, Higgs modes

Methods

- QFT many-body methods, Feynman diagrams
- Analytical tools (Complex analysis, differential equations, linear algebra, etc)
- Numerical modeling (C, C++, parallel codes GPU / MPI)

Physics Education Research

Current research interests of the PER group:

- Attitudes and beliefs about science
- Use of statistical tools to better understand concept inventories

- Oral communication skills of STEM graduate students
- Using Minecraft to teach spatial reasoning
- How to better train graduate teaching assistants

