Topics

MECHANICS

	Identification of symmetries and conserved quantities. Application of conservation laws.	
	One-dimensional motion in a conservative system with an arbitrary potential. The concept of turning points.	
	Equilibrium of mechanical systems.	
	Lagrangian methods.	
	The simple harmonic oscillator. Free and damped oscillations, inclusion of external forces, resonance. Calculation of the natural frequency for small oscillations about the minimum of an arbitrary potential.	
	Motion in a central potential. Conservation of angular momentum.	
	Coupled harmonic oscillators. Normal modes of a system of masses, springs and pendula. Solution to initial-value problem.	
	Rotational motion <u>about a single axis; angular momentum and rotational energy</u> . The gyroscope. Rolling.	
	Oscillations and wave propagation in strings and membranes. Normal modes for particular boundary conditions. Solution to initial-value problem.	
Suggested textbooks:		
•	Thornton and Marion, Classical Dynamics of Particles and Systems	
•	Fowles and Cassiday, Analytical Mechanics	
•	Morin, Introduction to Classical Mechanics	
QUANTUM MECHANICS		
	Measurements in quantum mechanics: expectation values, possible measurement outcomes and their probabilities. The relevance of commutation relations to measurement. The uncertainty principle.	
	Superposition states. Solutions to initial-value problems for Time evolution of superposition states. Amplitudes of the constituent states and their probabilistic interpretation.	
	Bound-state problems, properties of the spectrum and the wavefunctions (most importantly 1D Dirac δ -function, 1D/2D/3D square well, 1D/2D/3D harmonic oscillator).	

\Box Scattering in 1D. Transmission and reflection from a barrier/well. Quantum tunneling.
□ Symmetry of the Hamiltonian, implications for symmetry of the wavefunctions, and their usage to simplify calculations/analysis of quantities (e.g. energy spectrum, matrix elements, etc.).
$\hfill\Box$ Time-independent non-degenerate perturbation theory: energy corrections to second order; wave function to first order.
$\hfill\square$ Time-independent degenerate perturbation theory. Lifting of degeneracy.
☐ Time-dependent perturbation theory: first-order wave function corrections and the meaning of interaction matrix elements between states.
\Box Motion in a central potential. Hydrogen states wavefunctions and energies.
$\hfill \square$ Identical particles. Exchange symmetry and interaction. Pauli exclusion principle.
□ Angular momentum and spin (half-integer and integer). Spin-1/2 matrices. Addition rules. Hamilitonians with coupling of spin to another spin and to orbital angular momentum.
\Box Energy of a spin in an external magnetic field. Spin precession.
Suggested textbooks:
• D. J. Griffiths Introduction to Quantum Mechanics
• Gasiorowicz, Quantum Physics
• Beiser, Concepts of Modern Physics
Electricity and Magnetism
☐ The electric field due to a static charge distribution. The magnetic field due to a static current distribution. Fields from electric and magnetic dipoles.
\Box Boundary value problems involving slabs, cylinders and spheres. Laplace's and Poisson's equation.
\Box Fields in matter. Polarization, magnetization.
☐ Conducting matter. Ohm's Law.
☐ Faraday's Law. Electromagnetic induction.
\Box Electromagnetic wave propagation in vacua and in matter. Reflection and transmission for dielectric and conducting media.
☐ Motion of a charged particle under the Lorentz force. The Hall Effect.

	Dipoles (electric and magnetic) in external fields.	
	Fundamental circuits, e.g. RLC, RC, LC.	
	Poynting flux. Energy, momentum, and angular momentum of the field.	
S	uggested textbooks:	
•	D. J. Griffiths, Introduction to Electrodynamics	
•	Lorrain and Corson, Electromagnetic Fields	
Thermal and Statistical Physics		
	The first, second, and third laws of thermodynamics and their applications.	
	Elementary kinetic theory. Cross section, mean-free-path, collision time.	
	Ideal gases. , non-ideal gases, and the Joule-Thomson process.	
	Adiabatic, isothermal, and isochoric processes. The physics of heat engines.	
	The Maxwell relations and their use to determine relationships between thermodynamic variables. Equations of state.	
	Thermodynamics of phase transitions including heat of fusion, latent heat, and entropy changes. The Clausius-Clapeyron equation.	
	$\frac{\ Microcanonical,\ canonical,\ and\ grand\ canonical\ ensembles,\ and\ their\ connection\ to\ thermodynamics.}$	
	Calculation of partition functions and their use to calcuate the physical properties This includes systems with discrete energy spectra and phase space integration.	
	Heat capacity of gases with translational and rotational degrees of freedom. The Dulong-Petit and Einstein models for the heat capacity.	
	Maxwell and Boltzmann distributions.	

 \square Brownian motion and random walk. Thermal diffusion.

Suggested textbooks:

- F. Reif, Fundamentals of Statistical and Thermal Physics
- H. B. Callen, Thermodynamics and an Introduction to Thermostatistics
- K. Stowe, Introduction to Statistical Mechanics and Thermodynamics

□ Bose and Fermi statistics. Electron degeneracy in metals. Bose-Einstein condensation. Calculation of the energy distribution of a blackbody and the energy flux.