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(CM1) Consider a rocket traveling in a straight line subject to an external
force Fext acting along the same line. The engine ejects mass at a constant
exhaust speed u relative to the rocket in the backward direction.

(a). Derive the equation of motion governing the mass remaining in the
rocket m and the rocket’s velocity v relative to the ground, i.e., a differential
equation relating v̇ and ṁ. [Hint: You might want to consider the total
momentum of the system at time t and t+∆t with ∆t small. ]

(b). Find v(m) when Fext = 0. At time t = 0, the rocket has mass m0

and velocity v0 = 0.

(c). Suppose the rocket ejects mass at a constant rate ṁ = −k, and
suppose the rocket is subject to a resistive force Fext = −bv where b is a
constant. Show that if the rocket starts from rest and initial mass is m0,
then its velocity is given by

v(t) =
k

b
u
[
1− [m(t)/m0]

b/k
]
.

The following math may or may not be useful:∫ x

x0

dx′

1− ax′
=

1

a
ln

(
1− ax0
1− ax

)
, (1)

a lnx = ln(xa). (2)

Solution:

(a). Let the mass in the main rocket at time t be m and the mass to be
ejected dt later be dm < 0 (sign chosen such that ṁ = dm/dt < 0).

At time t, the total momentum of the system is

P (t) = mv, (1)

where v is the velocity at time t.

At time t+dt, the mass remaining in the main rocket ism−|dm| = m+dm
and the rocket travels at v + dv. The ejected mass travels at −u relative to
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the rocket, which means that it travels at v−u relative to the ground. Thus,
the total momentum of the system is

P (t+ dt) = (m− |dm|)(v + dv) + |dm|(v − u) ≃ mv +mdv + udm. (2)

Newton’s second law states

P (t+ dt)− P (t) = Fextdt (3)

or mdv = −udm+ Fextdt

mv̇ = −uṁ+ Fext. (4)

(b). When Fext = 0, we have

mdv = −udm

or

∫ v

0

dv = −u
∫ m

m0

dm

m
, (5)

which leads to
v = u ln

(m0

m

)
. (6)

(c). From ṁ = −k = const, it is easy to find

m(t) = m0 − kt. (7)

With Fext = −bv, we have

mv̇ = −uṁ− bv = ku− bv

1

ku

dv

1− b
ku
v
=

1

m0

dt

1− kt
m0

. (8)

Using the integral provided as well as the initial condition v(t = 0) = 0, we
find

1

b
ln

(
1

1− bv
ku

)
=

1

k
ln

(
1

1− kt
m0

)
. (9)

1− b

k

v

u
=

[
m(t)

m0

]b/k
. (10)
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It is then easy to show

v(t) =
k

b
u
[
1− [m(t)/m0]

b/k
]
.

Alternatively, we can directly parameterize the motion in terms of mass
by dividing both sides of Eq. 4 by ṁ = −k,

m
dv

dm
= −u+ b

k
v

dv

u
(
1− b

k
v
u

) = −dm
m
. (11)

Integrating both sides leads to (using the integral provided in the hint)

k

b
ln

[
1/

(
1− b

k

v

u

)]
= − ln

(
m

m0

)
ln

(
1− b

k

v

u

)
= ln

(
m

m0

)b/k

, (12)

which means

v =
k

b
u
[
1− (m/m0)

b/k
]
. (13)
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(CM2) The orbital dynamics of celestial binaries are modified by tidal in-
teractions, e.g., the earth-moon system. In this case, the Lagrangian of the
system in terms of generalized coordinates (r, ϕ) reads

L =
1

2
µ(ṙ2 + r2ϕ̇2) +

Gm1m2

r
+

Λ

r6
,

where Λ is a positive constant related to the tidal Love number.

(a). What are the units of Λ in terms of kg, m, s?

(b). Find the expression for the generalized momentum l associated with
the coordinate ϕ (i.e., the angular momentum of the orbit). When tidal
interaction is present, is l conserved? Why or why not?

(c). Find the equation of motion for r and show that it can be written
as µr̈ = −dUeff/dr, where Ueff is an effective potential modified by the tidal
interaction.

(d). Qualitatively sketch the shape of Ueff in the limit that Λ is a very
small positive constant. How many equilibrium points are there? What are
their stabilities based on your sketch?

[Hint: You DO NOT need to quantitatively find the locations of the
equilibrium. You will find Ueff as the sum over three terms. Each term has a
power-law dependence on r and the power-law indices are all different. As r
varies from +∞ to 0+, which term dominates Ueff? Does that term increase
or decrease as r decreases?]

Solution:

(a) Note that Λ/r6 has a dimension of [energy], which means it has units
[kgm2 s−2]. Consequently, Λ has units [kgm8 s−2].

(b) Generalized momentum associated with ϕ is

l =
∂L
∂ϕ̇

= µr2ϕ̇. (1)

Note this corresponds to the angular momentum of the orbit. It is a
constant of motion because L is independent of ϕ.
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(c).

d

dt

∂L
∂ṙ

=
∂L
∂r

µr̈ = −Gm1m2

r2
+ µrϕ̇2 − 6

Λ

r7
. (2)

Eliminate the variable ϕ̇ in terms of l and r,

µr̈ = −Gm1m2

r2
+

l2

µr3
− 6

Λ

r7
. = − d

dr

(
−Gm1m2

r
+

l2

2µr2
− Λ

r6

)
. (3)

Note that the first two terms are the same as in the Keplerian case. The last
term is a modification due to tidal interactions. Note also that the first and
last terms are just regular potentials that can be directly read out from the
Lagrangian L = T − U . The middle term is a centrifugal potential.

(d). See Fig. 1. Because Λ is small, Ueff is similar to the regular Keplerian
effective potential except for very small r. As r → 0+, 1/r6 ≫ 1/r2 and
Ueff ≃ −Λ/r6 → −∞.

From the sketch, there are two equilibrium points. The maximum is an
unstable equilibrium and the minimum is a stable one.
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Figure 1: Effective potential of a tidally interacting binary.
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(CM3) A block of mass 3m slides frictionlessly on the floor and is attached
to the wall by a spring of constant k, as shown in the figure. A uniform solid
cylinder of mass m and radius a (moment of inertia Icom = ma2/2 about its
axis) is placed on the block and rolls freely without slipping across the
top. The system is described by the centers of the block and cylinder, xb
and xc, relative to a fixed position, as shown in the figure. The spring is
unstretched when xb = 0.

(a) Using generalized coordinates xb and xc shown in the figure write the
full potential energy and kinetic energy of the system, without assuming
small perturbations. Express these in terms of xb, xc, ẋb and ẋc only.
Be sure to account for the no-slip condition of the cylinder

(b) Assuming small perturbations, find the complete set of normal modes
and eigenfrequencies of the system. Write each normal mode vector
without normalizing.

(c) At t = 0 the system is in equilibrium (xb(0) = xc(0) = 0) when the
block is given a small kick (ẋb(0) = v0) while the cylinder remains at
rest (ẋc(0) = 0). Write the position of the cylinder xc(t) for t > 0.

Solution:

(a) The potential energy of the system is that of the spring

V = Vsp = 1
2
k x2b (1)
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The kinetic energy of the block is

Tb = 1
2
(3m) ẋ2b = 3

2
mẋ2b (2)

The kinetic energy of the cylinder can be written as

Tc = 1
2
mẋ2c + 1

2
Ic θ̇

2 , (3)

where θ is the angle of the cylinder. Due to the no-slip condition the angle
is

θ = (xb − xc)/a , (4)

so θ = 0 if the cylinder remains above the block’s center. The cylinder’s
kinetic energy can then be expressed

Tc = 1
2
mẋ2c + 1

4
m(ẋb − ẋc)

2

= 3
4
mẋ2c + 1

4
mẋ2b − 1

2
mẋbẋc (5)

Combining this with eq. (2) gives the total kinetic energy

T = Tb + Tc = 7
4
mẋ2b + 3

4
mẋ2c − 1

2
mẋbẋc (6)

(b) To find the normal modes we form the mass matrix, Mij = ∂2T/∂ẋi∂ẋj

M =

[
Mbb Mbc

Mcb Mcc

]
= 1

2
m

[
7 −1
−1 3

]
, (7)

and the potential matrix Vij = ∂2V/∂xi∂xj

V = k

[
1 0
0 0

]
. (8)

Eigenfrequencies are found from the determinental equation

det
(
ω2M − V

)
=
(

1
2
m
)2 ∣∣∣∣ 7ω2 − 2(k/m) −ω2

−ω2 3ω2

∣∣∣∣ = 0 (9)

Denoting k/m = ω2
0 and taking the determinant of the 2 × 2 matrix yields

the equation

(7ω2 − 2ω2
0)3ω

2 − ω4 = (20ω2 − 6ω2
0)ω

2 = 0 (10)

9



The eigenfrequencies are therefore

ω2
1 = 0 , ω2

2 =
3

10
ω2
0 =

3k

10m
(11)

Normal mode vector s, denoted v(s), will satisfy the equation[
7ω2

s − 2ω2
0 −ω2

s

−ω2
s 3ω2

s

]
·

[
v
(s)
b

v
(s)
c

]
= 0 (12)

For s = 1, and ω2
s = 0 the top row demands v

(1)
b = 0 so

v(1) =

[
0
1

]
(13)

For s = 2, and ω2
s = (3/10)ω2

0 the bottom row demands v
(2)
b = 3v

(2)
c so

v(2) =

[
3
1

]
(14)

[It appears that during oscillation the cylinder rolls backward so that its
center moves only one-third as much as the block does. This gives it an
effective mass of m/3. When added to the mass of the sliding block, the
system has an effective mass meff = 3m +m/3 = (10/3)m. The oscillation

frequency is ω2 =
√
k/meff =

√
(3/10)k/m in agreement with eq. (11).]

(c) The general solution when this system begins in its equilibrium location,
x(0) = 0, is

x(t) = A1tv
(1) + A2 sin(ω2t)v

(2) , (15)

for constants As. The time derivative at t = 0 is

ẋ(0) = A1 v
(1) + ω2A2v

(2) =

[
3ω2A2

A1 + ω2A2

]
, (16)

after using eqs. (13) and (14). Equating this with

ẋ(0) =

[
v0
0

]
(17)
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yields

A2 =
v0
3ω2

, A1 = − ω2A2 = − v0
3

(18)

Using these in the bottom row of eq. (15) gives the position of the cylinder

xc(t) = − v0t

3
+

v0
3ω2

sin(ω2t) (19)
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(QM1) A harmonic oscillator is subject to some external potential. The
Hamiltonian of the system, in terms of raising and lowering operators of the
oscillator, is given by

Ĥ = ℏω
(
â†â+

1

2

)
+
(
V ∗â† + V â

)
where V = veiφ is the complex amplitude of the external interaction. Both
v and φ are real numbers, and v ≪ ℏω.

(a) Find the energy of the ground state of the system to lowest non-vanishing
order in V

(b) Find the ground state ket vector to lowest non-vanishing order in V .
What are the probabilities to find the system in one of the non-perturbed
states of the harmonic oscillator?

(c) Find the expectation value of the momentum in the ground state, again
to lowest order in V .

Reminder: raising and lowering operators for harmonic potential are

â† =

√
mω

2ℏ
x̂− i

√
1

2ℏmω
p̂ , â =

√
mω

2ℏ
x̂+ i

√
1

2ℏmω
p̂

Solution:

We denote

Ĥ = Ĥ0 + V̂ , with Ĥ0 = ℏω
(
â†â+

1

2

)
, V̂ = V ∗â† + V â

and use properties of the raising and lowering operators

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ ,

where |n⟩ are the orthogonal eigenstates of the unperturbed oscillator:

Ĥ0 |n⟩ = En |n⟩ , n = 0, 1, 2 . . . , En = ℏω(n+1/2), ⟨n|m⟩ = δnm .
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(a) Find the energy of the ground state to lowest non-vanishing order in V

EG.S. = E0 + ⟨0| V̂ |0⟩+
∑
n̸=0

| ⟨n| V̂ |0⟩ |2

E0 − En

= E0 −
v2

ℏω

since the only non-zero matrix element of the interaction is

⟨1| V̂ |0⟩ = V ∗ ⟨1| â† |0⟩ = ve−iφ

(b) Find the ground state ket vector to lowest non-vanishing order in V .
What are the probabilities to find the harmonic oscillator in one of its
non-perturbed states.

The ground state is

|GS⟩ = |0⟩+
∑
n̸=0

|n⟩ ⟨n| V̂ |0⟩
E0 − En

= |0⟩ − |1⟩ V
∗

ℏω

There is probability ≈ 1 to find the system in the ground state of the
oscillator, and probability (v/ℏω)2 to find the system in the first excited
state of the oscillator. The total probability does not sum to one because
we are missing higher order corrections to |GS⟩.

(c) Find the expectation value of the momentum in the ground state, again
to lowest order in V .

Momentum operator in terms of raising-lowering operators is

p̂ = −i
√

ℏmω
2

(â− â†)

and

PGS = ⟨GS| p̂ |GS⟩ = −i
√

ℏmω
2

[
⟨0| − V

ℏω
⟨1|
]
(â− â†)

[
|0⟩ − |1⟩ V

∗

ℏω

]
= −i

√
ℏmω
2

V − V ∗

ℏω
=

√
ℏmω
2

v

ℏω
2 sinφ

- it is real, and can be non-zero for phase of the interaction φ/π ̸= Z.
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(QM2) A particle in a box, 0 < x < a, has energy eigenstates, ϕn(x) given
by

ϕn(x) =

√
2

a
sin
(
πn

x

a

)
, En =

ℏ2π2

2ma2
n2 , n = 1, 2, . . .

The particle is in a state with the wave function

ψ(x) =


1√
a

, 0 < x <
a

2

− 1√
a

,
a

2
< x < a

If the energy of this particle is measured,

a. What is the expected position of the particle ⟨x⟩ before the energy
measurement is made?

b. What are the lowest two values of energy that could be found from
the measurement? (i.e. values that have non-zero probability of being
measured in this experiment.)

c. What are the probabilities of obtaining each result from part b.?

Solution:

(a) Expected position is given by

⟨x⟩ =

a∫
0

xψ2(x) dx =

a∫
0

x

a
dx =

x2

2a

∣∣∣∣a
x=0

=
a

2
, (1)

as could have been predicted.

(b) The initial state can be expanded in energy eigenstates

ψ(x) =
∞∑
n=1

An ϕn(x) , (2)

4



where

An =

a∫
0

ψ(x)ϕn(x) dx =

√
2

a

a/2∫
0

sin
(πnx

a

)
dx −

√
2

a

2∫
a/2

sin
(πnx

a

)
dx

= −
√
2

πn
cos
(πnx

a

)∣∣∣a/2
x=0

+

√
2

πn
cos
(πnx

a

)∣∣∣a
x=a/2

(3)

=

√
2

πn

[
1 − 2 cos(πn/2) + cos(πn)

]
. (4)

If n is odd then cos(πn/2) = 0 and cos(πn) = −1, so An = 0. The particle
cannot be found in an odd energy eigenstate. If n is even, however, we can
write it as n = 2m for integer m and

cos(πn/2) = cos(πm) = (−1)m (5)

cos(πn) = cos(2πm) = 1 (6)

The amplitude them becomes

A2m =

√
2

πm

[
1 − (−1)m

]
(7)

This vanishes for even values of m (i.e. n a multiple of 4). The smallest
values of n for which An ̸= 0 are therefore n = 2 and n = 6. The smallest
two observable values of energy are

E2 =
2ℏ2π2

ma2
and E6 =

18ℏ2π2

ma2
. (8)

(c) The amplitudes of these two states are

A2 =
2
√
2

π
, A6 =

2
√
2

3π
. (9)

The probability of making measurement En is pn = |An|2 so

p2 =
8

π2
and p6 =

8

9π2
. (10)
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To obtain the results for part b. graphically, begin by graphing the inte-
grand of eq. (4), namely ψ(x)ϕn(x). This resembles a graph of ϕn(x) over
the first half of the interval and −ϕn(x) over the second (see figure – dashed
curves show +ϕn(x) over the second half interval). It is evident that n = 1
and n = 4 (top row) have equal area above and below the x axis (i.e. shaded
areas). Their integral will vanish so An = 0 in those cases. Odd values of n,
such as n = 1, are symmetric about the midpoint and will therefore always
vanish. A value of n which is a multiple of 4 will have a whole number of
periods over the first half interval, so that integral will vanish; it will also
vanish over the second half interval and the total will be A4k = 0. On the
other hand, n = 2 and n = 6 (bottom row) have excess area above the x axis
so the area will be positive: An > 0. Indeed, there is an extra half period
above y = 0 so the net contribution is 1/m times the values of m = 1.

To obtain a sanity check for part c. consider the sum of all non-vanishing
probabilities ∑

m odd

p2m =
8

π2

∑
m odd

1

m2
. (11)

The sum can be obtained using the so-called Basel sum, first obtained by
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Euler,
∞∑

m=1

1

m2
=

π2

6
. (12)

The sum over even values of m can be written using m = 2k for all k

∑
m even

1

m2
=

∞∑
k=1

1

(2k)2
=

1

4
· π

2

6
. (13)

The sum over odds is therefore∑
m odd

1

m2
=

∞∑
m=1

1

m2
−

∑
m even

1

m2
=

3

4
· π

2

6
=

π2

8
. (14)

Using this in eq. (11) yields∑
m odd

p2m =
8

π2

∑
m odd

1

m2
= 1 , (15)

as it really should.

On the other hand, the expected energy yields a sum

⟨E⟩ =
∑
m odd

E2m p2m =
∑
m odd

2ℏ2π2

mpa2
m2 × 8

π2m2

=
16ℏ2

mpa2

∑
m odd

1 → ∞ , (16)

which clearly diverges. So the expected energy diverges even though any
measurement will yield a finite value. The divergences arises from the dis-
continuity in the function ψ(x).

7



(QM3) A particle of mass m is confined in a 3D spherical infinite potential
well with radius a:

V (r) =

{
0 , 0 ≤ r ≤ a
∞ , r ≥ a

The stationary states (i.e. solutions to the time-independent Schrödinger
equation) have the form:

ψnlm(r, θ, ϕ) =
unl(r)

r
Y m
l (θ, ϕ)

where Y m
l (θ, ϕ) are the spherical harmonics and unl(r) obeys the following

differential equation:

− ℏ2

2m

d2u

dr2
+

[
V (r) +

ℏ2

2m

l(l + 1)

r2

]
u = Enlu

(a) Determine the expectation values and variances of the magnitude (L2)
and z-component (Lz) of the angular momentum of an arbitrary stationary
state, ψnlm.

(b) In addition to u(0) = 0, express all relevant boundary conditions for
unl(r) for r > 0.

(c) Determine the expression for the energies of all of the possible stationary
states where the magnitude of the total angular momentum (L2) will always
be measured to be 0ℏ2.

(d) Sketch the radial part of the wave function (u(r)/r) for the first two
lowest-energy states that you found in (c) for 0 ≤ r ≤ 2a (2a in the upper
limit is not a misprint). Label all axes and be sure to indicate major features
of the radial wave function such as nodes. You do not need to normalize.

Solution:

(a) Because the potential is spherically symmetric, the stationary states of
the system are also eigenstates of L2 and Lz. This fact is reflected by the
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angular dependence of the wave function, which is described by the spherical
harmonics which are eigenfunctions of L2 and Lz. So,

L2ψnlm = l(l + 1)ℏ2ψnlm

Lzψnlm = mℏψnlm

Because ψnlm are eigenstates of both L2 and Lz, the expectation values for
each quantity are just the respective eigenstates and the variances are each
identically 0:

〈
L2
〉
=

∫∫∫
ψ∗
nlmL

2ψnlmdV

= l(l + 1)ℏ2

and (following the same process as above)

σ2
L2 =

〈
(L2)2

〉
− (
〈
L2
〉
)2

= 0

Likewise, following the same logic as above:

⟨Lz⟩ = mℏ
σ2
Lz

= 0

(b) Because V (r) = ∞ for r ≥ a, ψn,l,m(r, θ, ϕ) = 0 for r ≥ a. This condition
means that means that u(r) = 0 for r ≥ a.

(c) A state that always returns 0ℏ2 for a measurement of total angular mo-
mentum corresponds to all states where l = 0 (there is an infinite number of
them!). For these states, the differential equation for u(r) is:

− ℏ2

2m

d2u

dr2
+ [V (r)]u = En0u
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In the case of the infinite spherical potential well, V (r) = 0 inside the well and
the wave function is 0 outside the well. So, the above differential equation
needs to only be solved from 0 ≤ r ≤ a and simplifies further to:

− ℏ2

2m

d2u

dr2
= En0u

The general solution for u(r) from 0 ≤ r ≤ a is:

u(r) = A cos(kr) +B sin(kr)

where k =
√
2mEn0/ℏ. Note that En0 > 0 because the minimum value of

V (r) is 0.

The next step is to consider the boundary conditions. Because cos(kr) ̸= 0
at r = 0, A = 0 in order to satisfy the condition that u(0) = 0. Thus, the
(unormalized) solution becomes:

u(r) = B sin(kr)

The second boundary condition imposes that u(a) = 0, which means that
ka = nπ, where n = 1, 2, 3, .... Substituting in for k and solving for En0

yields the energies of all states where l = 0:

En0 =
π2ℏ2

2ma2
n2, n = 1, 2, 3, ...

(d) Noting that Rnl(r) = unl(r)/r, up to a normalization constant, the radial
component of the lowest energy state (which is also the true ground state of
the system) is:

R10(r) =

{
B10

sin(π
a
r)

r
, 0 ≤ r ≤ a

0 , r ≥ a

Likewise, the radial component of the state with the second-lowest energy is:

R20(r) =

{
B20

sin( 2π
a
r)

r
, 0 ≤ r ≤ a

0 , r ≥ a

10



To sketch these plots, it is useful to remember that:

lim
x→0

sin(kx)

x
= k

With that analysis, R10(r) starts at a finite value at r = 0, is 0 at r = a, and
has 0 nodes (from 0 ≤ r < a). R20(r) has similar behavior but has a node at
r = a/2:

11
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(EM1) A pair of co-axial conductors each have length L and are separated
by an empty gap (i.e. vacuum or air). The inner conductor has an outer
radius a and the outer conductor has an inner radius b. You may neglect
fringing fields or other effects of the ends. The outer conductor is grounded
and thus has potential V = 0.

a. Positive charge Q is placed on the inner conductor. What is the electric
field in the gap (a < r < b)? (You must show your work to receive
credit).

b. What is the potential of the inner conductor?

c. What is the capacitance of the conductor pair?

Solution:
a. Construct a co-axial Gaussian surface S of radius r ∈ (a, b) and length
∆z < L. this will enclose a fraction ∆z/L of the total charge placed on the
inner conductor. Gauss’s law then states∮

S

E · da = 2πr∆zEr =
Qenc

ϵ0
=

Q

ϵ0

∆z

L
(1)

This yields the electric field

E = Er r̂ =
Q

2πϵ0 r L
r̂ a < r < b . (2)

2



b. The potential of the inner contuctor is found from the path integral fromt
he outer to the inner

Va = −
in∫

out

E · dl = −
a∫

b

Er dr = − Q

2πϵ0 L

a∫
b

dr

r

= − Q

2πϵ0 L
ln r
∣∣∣a
r=b

=
Q

2πϵ0 L
ln(b/a) (3)

c. The capacitance is found from the ratio

C =
Q

Va
=

2πϵ0 L

ln(b/a)
(4)

As a check on this result we may convert the cylindrical gap to a plane
parallel capacitor by taking b = a + d where the gap d ≪ a. The logarithm
them becomes

ln

(
a+ d

a

)
= ln

(
1 +

d

a

)
≃ d

a
. (5)

Inserting this into (4) yields

C ≃ 2πϵ0 La

d
=

ϵ0A

d
(6)

where A = 2πaL is the surface area of the inner conductor — and approx-
imately of the outer conductor. We recognize ϵ0A/d as the capacitance of
parallel plates, with area A separated by distance d.
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(EM2) A thin wire loop A given by x2 + y2 = a2 carries a constant current
IA. Another loop B is given by (x− s)2 + y2 = a2, with s ≫ a. Loop B has
resistance R and negligible self-inductance, and initially there is no current
in loop B.

(a) Sketch the magnetic field B⃗ in the entire space.

(b) Find the magnetic flux Φ through loop B to leading order of a/s≪ 1.

(c) Now loop B starts to move away from loop A, and the current IA in
loop A is kept constant. What is the direction of current IB in loop B?
Explain why.

(d) Find the total charge ∆Q that has passed through a given cross-section
of the wire of loop B when it has moved from (s, 0, 0) to (2s, 0, 0).

Solution:

(a) The magnetic field due to the current in loop A is graphed in the figure.
Along the z-axis, the field is in ẑ direction, and in the xy-plane, the field is
in −ẑ direction. The field is symmetric about the z-axis, and decreases with
distance from loop A.

(b) Given s ≫ a, we approximate the magnetic field at loop B as a dipole

4



field, so that

B⃗ =
µ0

4π

3(r̂ · m⃗)r̂ − m⃗

r3
,

where m⃗ is the dipole moment of the current loop A, given by

m⃗ = πa2IAẑ,

and r⃗ is the position vector. At the position of loop B, r⃗ = sx̂, so r̂ = x̂, and
r = s, and the magnetic field at the center of loop B is

B⃗ =
µ0πa

2IA
4π

3(x̂ · ẑ)x̂− ẑ

s3
= −µ0a

2IA
4s3

ẑ.

To leading order in a/s the field in loop B has a constant value, matching
the center. Using this gives a net flux

Φ ≈ B⃗ · A⃗ = −µ0πa
4IA

4s3
,

“− ” sign indicating the field in −ẑ direction.

(c) As loop B starts to move away from loop A, the flux through loop B
is decreasing; from Lenz’s law, the induced current IB in loop B is in the
direction to increase the flux in −ẑ direction, so IB is in the opposite sense
of IA, or clockwise as viewed from ẑ.

(d) From Faraday’s law, we find the EMF along the loop B wire due to its
motion, which is the only EMF (as the self-induction of loop B is ignored),
and then apply Ohm’s law to arrive at

E = −dΦ
dt

= IBR = R
dQB

dt
,

leading to

∆QB = −∆Φ

R
,

∆Φ being the difference of the flux through loop B from its position at (s, 0, 0)
to (2s, 0, 0). From (b), we find the total charge that has passed through the
cross-section along the loop B wire

∆QB =
µ0πa

4IA
4R

(
1

s3
− 1

8s3

)
=

7µ0πa
4IA

32Rs3
.
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(EM3) A particle of mass m carrying a positive charge q > 0 is injected
from the left half space (x < 0) into a special mass spectrometer occupying
the entire right half space (x > 0). In the spectrometer, there is a uniform

magnetic field B⃗ = B0ẑ and electric field of form E⃗ = e0zẑ, where B0 and e0
are positive constant.

(a) Describe particle’s motion in the mass spectrometer.

(b) Find particle’s position [x(t), y(t), z(t)], given the initial condition of the
particle at the injection x0 = y0 = z0 = 0, ẏ0 = 0, ẋ0 > 0, ż0 ̸= 0.

(c) When the particle exits of the mass spectrometer (i.e. returns to the left
half space), find its position and velocity.

(d) Do your results in (b) change if e0 < 0?

Solution:
(a) When the particle is injected to the mass spectrometer that has a mag-
netic field in ẑ direction and electric field in the same direction, in the xy-
plane, the particle’s motion becomes circular, and in z direction, particle is
accelerated by the electric field. So particle will have a spiral motion in the
mass spectrometer.

(b) We write down the equation of motion subject to the Lorenze force

m¨⃗r = q(E⃗ + ˙⃗r × B⃗),

and in components:

mẍ = qB0ẏ, (1)

mÿ = −qB0ẋ, (2)

mz̈ = qe0z. (3)

To solve the first two equations, we integrate the second equation to find
ẏ = −(qB0/m)x + C, C being an integral constant. With the initial con-
dition x0 = 0, ẏ0 = 0 at t = 0, we find C = 0. Taking this to the first
equation, we get ẍ = −(qB0/m)2x, and its solution is a sinusoidal function
x = A sin(Ωt+ ϕ0), where Ω = qB0/m is Lamor frequency. Again using the
initial condition x0 = 0, ẋ0 ̸= 0 at t = 0, we find ϕ0 = 0, and A = ẋ0/Ω. We

6



then solve for y(t) from ẏ = −Ωx = −ẋ0 sin(Ωt). Finally, the solution is

x =
ẋ0
Ω

sin(Ωt), (4)

y =
ẋ0
Ω
[cos(Ωt)− 1]. (5)

Solving the third equation with the initial condition, we arrive at

z =
ż0
ω

sinh(ωt), (6)

for qe0 > 0, where ω =
√
qe0/m. In this case, the charge is running away

further and further from the origin.

(c) After half a Lamour period ∆t = πm/|qB0|, the particle returns to the
left half space at x = 0, ẋ = −ẋ0, y = −2ẋ0m/(qB0), ẏ = 0, and its position
and speed in z direction being z = (ż0/ω) sinh(ω∆t), ż = ż0 cosh(ω∆t).

(d) If qe0 < 0, we get an oscillation solution in z direction

z =
ż0
ω

sin(ωt), (7)

where ω =
√

|qe0|/m, so the particle oscillates in z direction! In the xy
plane, particle’s motion is the same circular motion around the z direction.

7



Department of Physics
Montana State University

Qualifying Exam

January, 2024

Day 4

Statistical and Thermal Physics

Exam ID

CM1 A−11

example.

as shown in this

on EVERY PAGE,

and your

problem number
Write the

• Show your work.

• Write your solutions on the blank paper
that is provided.

• Begin each problem on a new page.
Write on only one side.

• If you do not attempt a problem, please
turn in a blank sheet with your Exam
ID and the problem number.

• Turn your work in to the proctor. There
is a stack for each problem.

• Return all pages of this exam to the
proctor, along with any writing that
you do not wish to submit.

1



(ST1) An engine is going through the cycle shown in the figure. The working
medium is the ideal monoatomic gas. AD and BC are adiabatic processes,
while AB and DC are isochoric processes (i.e. constant volume).

V
2

V
1

P
a

P
b

T
1

T
2

P

V

A

B

C

D

adiabatic

adiabatic

(a) What direction, clockwise or anticlockwise, does the engine have to cycle
to generate positive work?

(b) During which segment(s) of the cycle does the engine receive heat from
a heater to increase its energy?

(c) What is the efficiency of this engine? Express your answer using only
V1,2 and numerical constants.

Solution:

This is the Otto cycle, used in internal combustion engines.

(a) We should cycle the engine in clockwise direction A → B → C →
D → A to produce positive work

W =

∮
ABCDA

PdV > 0

(b) The heat is supplied to the engine’s working medium during the AB leg
of the cycle.
(c) The heat intake is

Qin = CV∆TBA

2



where heat capacity of the monoatomic gas of N particles is CV = 3
2
NkB.

The heat released is
Qout = CV∆TCD

The work done by the working medium in the closed cycle and the efficiency
of the engine are

∆E = ∆Q−W = 0 ⇒ W = Qin −Qout

⇒ η =
W

Qin

= 1− Qout

Qin

= 1− TC − TD
TB − TA

We relate temperatures of various points on the cycle using adiabatic expan-
sion and compression legs:

PV γ = const ⇒ TV γ−1 = const

where adiabatic constant for ideal monoatomic gas is

γ =
CP

CV

=
CV +NkB

CV

=
5

3

and so

TC = TB

(
V1
V2

)γ−1

and TD = TA

(
V1
V2

)γ−1

that results in

η = 1−
(
V1
V2

)γ−1

= 1−
(
V1
V2

) 2
3

3



(ST2) Consider two fixed-magnitude dipoles M1 and M2 separated by dis-
tance r, and in contact with a thermal bath with temperature T . We fix
the orientation of dipole 1 to be up, while second dipole can have 4 ori-
entations: A,B,C,D. The dipole-dipole interaction results in energies of the
relative orientations of two dipoles to be

Ei =


−∆ , i = A

0 , i = B,D

+∆ , i = C

where ∆ =
M2

r3
, M = |M1| = |M2| .

M
2M

1

A

r

B

C

D

Answer the following questions:

(a) What is the probability to find the dipoles orthogonal to each other?

(b) What is the average energy of the dipole-dipole system?

(c) Find the simplified expression of the average energy in the high tem-
perature limit. What is its dependence on r?

(d) Is the average interaction between dipoles repulsive or attractive?

Solution:

(a)

ρ(M1 ⊥ M2) = ρi=B + ρi=D =
2

2 + e−∆/T + e∆/T
=

1

2 cosh2(∆/2T )

(b)

E =
∑
i

Eiρi =
∆ e−∆/T −∆ e∆/T

2 + e−∆/T + e∆/T
= −∆tanh

∆

2T

4



(c)

E ≈ −∆2

2T
= −M

4

2T

1

r6

(d) Average interaction energy of the two dipoles becomes more negative as
dipoles get closer, so this is attractive interaction (Van der Waals).
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(ST3) Two solid blocks have heat capacities C1 and C2 = 3C1, independent
of temperature. Initially the blocks are separated and have temperatures T1
and T2 = T1/3. The blocks then are brought into thermal contact with each
other, while thermally isolated from their environment. Find the temper-
atures of the blocks after a long time. Find the change in entropy of the
system; does it increase, decrease or stay the same?

Solution:

We are assuming that the work done by the solids in contact is negligible.
The energy balance is due to heat transfer. In the thermally isolated envi-
ronment the heat from one block is completely absorbed by the second block,
which determines the final equilibrium temperature of the joined blocks:

C1(Tf − T1) + C2(Tf − T2) = 0 ⇒ Tf =
T1C1 + T2C2

C1 + C2

=
1

2
T1 =

3

2
T2

The entropy change of individual blocks {i = 1, 2} as the temperature
equilibrates is

TdSi = CidT ⇒ ∆Si = Ci ln
Tf
Ti

and since entropy is additive quantity, the total entropy change is

∆S = ∆S1+∆S2 = C1 ln
Tf
T1

+C2 ln
Tf
T2

= C1 ln
1

2
+C1 ln

(
3

2

)3

= C1 ln
27

16
> 0

The entropy of a closed system cannot decrease. And since the heat exchange
is non-reversible process, the entropy is increasing.
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