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(CM1) A harmonic oscillator has natural frequency ω0 and a weak damping
0 < γ ≪ ω0. It is driven by a force at a single frequency, with F (t) = ω2

0f0e
iΩt,

with f0 a constant. The equation of motion reads

ẍ+ 2γẋ+ ω2
0x = ω2

0f0e
iΩt.

[Here we work with a complex x for convenience. All the frequencies (ω0,Ω, γ)
are real. To get physical solutions, we can simply take the real part of x.
You may or may not need Euler’s relation eiθ = cos θ + i sin θ. ]

(a). When f0 = 0 (i.e., without external drive), find a general expression
for x(t) for arbitrary, non-trivial initial conditions.

(b). For non-zero f0, show that a solution of the form x(t) = B exp(iΩt)
solves the equation. Express the complex amplitude B in terms of other
parameters of the problem.

(c). Show that the sum of the solutions from (a) and (b) also solves the
equation. Suppose we wait long enough, which term in the sum dominates?

(d). Consider only the dominant term from (c). Define the response
function T (Ω) = x/f0. Sketch out the shape of |T (Ω)| as a function of
Ω > 0. When will |T (Ω)| achieve its maximum and what is its value there?
Make sure you also include the correct asymptotic behaviors in the limit
Ω ≪ ω0 and Ω ≫ ω0. In the two limits, is x(t) in phase or out of phase with
F (t)?

Solution:

(a). The solution has the form x = Aei(ωt+ϕ0) with ω ∈ C.

−ω2 + 2iγω + ω2
0 = 0, (1)

so

ω = ±
√
ω2
0 − γ2 + iγ ≃ ω0 + iγ. (2)

Therefore, the general solution reads

x(t) = Aeiϕ0e−γte±i
√

ω2
0−γ2

, (3)

or equivalently,

Re [x(t)] = e−γt

[
Ac cos

(√
ω2
0 − γ2t

)
+ As sin

(√
ω2
0 − γ2t

)]
, (4)
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where (A, ϕ0) or (Ac, As) are arbitrary constants to be set by the initial
conditions.

(b). From the provided ansatz,(
−Ω2 + 2iγΩ + ω2

0

)
B = ω2

0f0, (5)

so

B =
ω2
0f0

ω2
0 − Ω2 + 2iγΩ

. (6)

(c). Suppose the solutions in (a) and (b) are denoted respectively by xa
and xb, satisfying

ẍa + 2γẋa + ω2
0x = 0. (7)

ẍb + 2γẋb + ω2
0xb = ω2

0f0e
iΩt. (8)

then summing the two equations leads to

(ẍa + ẍb) + 2γ(ẋa + ẋb) + ω2
0(xa + xb) = ω2

0f0e
iΩt. (9)

Since taking time derivatives is a linear operation, xa + xb is also a solution
of the equation of motion.

As t → +∞, xa ∝ e−γt will decay away, and therefore xb dominates the
solution.

(d).

T (Ω) =
B

f0
=

ω2
0

ω2
0 − Ω2 + 2iγΩ

=
ω2
0(ω

2
0 − Ω2 − 2iγΩ)

(ω2
0 − Ω2)2 − 4γ2Ω2

. (10)

A sketch of |T (Ω)| is shown in Fig. 1.

When Ω ≪ ω0, T ≃ 1, and the oscillator moves in phase with the drive.

When Ω ≫ ω0, T ≃ −ω2
0/Ω

2. In other words, a high-frequency drive
is suppressed as Ω−2. The oscillator moves in the opposite phase with the
drive.

When Ω ≃ ω0, the value of |T | is maximized. This corresponds to reso-
nance. The peak value is

|Tmax| = |T (Ω = ω0)| =
ω0

2γ
. (11)
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Figure 1: Response T (Ω).

It is not required but we can also identify further the half width at half
maximum ∆ω of the resonance,

|(ω0 ±∆Ω)2 − ω2
0| ≃ 2γω0, or ∆Ω ≃ γ. (12)
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(CM2) As a model of a linear triatomic molecule (such as CO2), consider
the system shown in Figure 2, with two identical atoms each of mass m
connected by two identical springs (with spring constant K and rest length
l0) to a single atom of mass M . Assume that all motion is in the x direction
and use the positions of the masses x1, x2 and x3, as generalized coordinates.

Figure 2: Cartoon of a CO2 molecule.

(a). Write down the Lagrangian and find the equations of motion.

(b). Find the normal frequencies of the system. Assuming m ≃M , rank
the magnitude of the eigenfrequencies from the highest to the lowest. Show
that one of the normal frequencies is zero.

(c). Find the normal mode vectors. (You need not normalize them.)
Describe in words the motion corresponding to each nomral mode.

Solution:

Kinetic energy T is

T =
1

2
mẋ21 +

1

2
Mẋ22 +

1

2
mẋ23. (1)

Potential energy U is

U =
1

2
k (x1 − x2)

2 +
1

2
k(x2 − x3)

2. (2)

The Lagrangian is L = T − U .

Equations of motion

d

dt

∂L

∂ẋ1
= mẍ1 =

∂L

∂x1
= −k(x1 − x2), (3)

d

dt

∂L

∂ẋ2
=Mẍ2 =

∂L

∂x2
= k(x1 − x2)− k(x2 − x3) = k(x1 − 2x2 + x3), (4)

d

dt

∂L

∂ẋ3
= mẍ3 =

∂L

∂x3
= k(x2 − x3), (5)
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or in a matrix form,m 0 0
0 M 0
0 0 m


︸ ︷︷ ︸

M

ẍ1ẍ2
ẍ3

 = − k

 1 −1 0
−1 2 −1
0 −1 1


︸ ︷︷ ︸

K

ẍ1ẍ2
ẍ3

 . (6)

(b). Assuming x ∼ eiωt, the eigenfrequencies are found through the roots
of

det
(
K − ω2M

)
= 0, (7)

or

ω2(
k

m
− ω2)(

2m+M

mM
k − ω2) = 0. (8)

Therefore, in descending order the eigenfrequencies are

ω2
1 =

2m+M

mM
k, ω2

2 =
k

m
, ω2

3 = 0. (9)

(c). Find eigenmodes ξi through(
K − ω2

iM
)
ξi = 0. (10)

We have,

(
K − ω2

1M
)
=

−2m
M
k, −k, 0

−k −M
m
k, −k

0, −k, −2m
M
k

 , (11)

so the unnormalized eigenmode

ξ1 = (1,−2
m

M
, 1)T . (12)

In other words, this mode corresponds to the two atoms on both sides (i.e.,
the two m’s) moving in the same direction, while the central atomM moving
in the opposite direction.

For the next one,

(
K − ω2

2M
)
=

 0, −k, 0
−k −(2− M

m
)k, −k

0, −k, 0

 , (13)
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so
ξ2 = (1, 0,−1)T . (14)

In this case, M stays at rest while the two m’s moving in opposite directions
with the same amplitude.

Lastly, (
K − ω2

3M
)
=

 k, −k, 0
−k 2k, −k
0, −k, k

 , (15)

so
ξ3 = (1, 1, 1)T . (16)

This means the entire molecule moves as a whole without internal motion.
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(CM3) Two balls hit a rod that can freely pivot around its center. Both
balls have the same mass m and speed v0. They hit perpendicular to the
rod at equal distances r from the pivot axis. One ball undergoes a perfectly
elastic collision with the rod and the other a perfectly inelastic (i.e. it sticks
to the rod). Assume each collision happens instantaneously, but the elastic
collision happens just before the inelastic. The time between the collisions is
very short, so that the rod does not change its position significantly during
that interval, and both balls hit the rod at 90 degree angles.

What will be the eventual direction and angular speed of rotation of the
rod and stuck ball? The moment of inertia of the rod about its pivot is
I ≫ mr2.

v
0

v
0

inelastic

elastic

m

m

I

r

r

Solution:

Let’s choose the coordinate system. Take positive direction of linear ve-
locity to be from right to left, and positive angular velocity corresponding to
anti-clockwise rotation.

An elastic collision is the one where kinetic energies of colliding bodies
are conserved, while inelastic collision will lose kinetic energy and the two
colliding objects will move together after the collision. In both cases the
angular momentum is conserved.

We can make the following table for the velocities of the three objects
before and after each collision. We treat both collisions as instantaneous,
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rod top ball (inelastic) bottom ball (elastic)
Before collisions ω0 = 0 v0 v0
After elastic collision ω̃ =? v0 v =?
After inelastic collision ω =? ωr =? n/a

For the first, elastic collision, we write two conservation laws:

−mrv0 = Iω̃ −mrv (angular momentum)

1

2
mv20 =

1

2
Iω̃2 +

1

2
mv2 (energy)

and solve for intermediate angular velocity ω̃ and the outgoing velocity of
the bottom ball:

ω̃ = − 2mrv0
I +mr2

v = v0
mr2 − I

mr2 + I

Negative angular velocity means rod rotates clockwise.

During the inelastic collision only angular momentum is conserved and
the ball ‘sticks’ to the rod, moving with the same angular velocity after the
collision

Iω̃ +mv0r = Iω +mr2ω

This gives final answer

ω =
Iω̃ +mv0r

I +mr2
= − I −mr2

(I +mr2)2
mrv0

For the I ≫ mr2 the angular velocity will be ω ≈ −mrv0/I - clockwise
rotation, since it is negative.
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(QM1) A particle of massm is in a 2d a×a square well potential with infinite
walls at x = 0, x = a, y = 0, y = a. The particle is subject to a perturbation

V ′(x, y) = α δ(x− y) , (1)

where α > 0 is real. Find all the states in the first excited energy level of
the unperturbed system. Use degenerate perturbation theory to compute
the first order corrections to the energies of the first excited state.

Some or all of the following integrals may prove helpful (m,n = 1, 2, 3, · · · )

1∫
0

sin2(nπt) dt =

1∫
0

cos2(nπt) dt =
1

2

1∫
0

sin2(nπt) sin2(mπt) dt =
1

4
+

1

8
δnm

Solution:
The first excited state must have one dimension with n = 1 and the other
with n = 2. The possibilities are

ψ1(x, y) =
2

a
sin

(πx
a

)
sin

(
2πy

a

)
(1)

ψ2(x, y) =
2

a
sin

(
2πx

a

)
sin

(πy
a

)
(2)

We must work out all matrix elements of the perturbation. One diagonal
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elements is

V11 = ⟨ψ1|V ′ |ψ1⟩ =
4α

a2

∫ ∫
sin2

(πx
a

)
sin2

(
2πy

a

)
δ(x− y) dx dy

=
4α

a2

a∫
0

sin2
(πx
a

)
sin2

(
2πx

a

)
dx =

α

a2

a∫
0

[
cos

(πx
a

)
− cos

(
3πx

a

)]2
dx

=
α

a2

a∫
0

[
cos2

(πx
a

)
+ cos2

(
3πx

a

)
− 2 cos

(πx
a

)
cos

(
3πx

a

)]
dx

=
α

a
− α

a2

a∫
0

[
cos

(
2πx

a

)
+ cos

(
4πx

a

)]
dx =

α

a
(3)

It is easy to see that V22 = V11. One diagonal element is

V12 = ⟨ψ1|V ′ |ψ2⟩ =
4α

a2

∫ ∫
sin

(πx
a

)
sin

(
2πy

a

)
sin

(
2πx

a

)
sin

(πy
a

)
δ(x− y) dx dy

=
4α

a2

a∫
0

sin2
(πx
a

)
sin2

(
2πx

a

)
dx = V11 =

α

a
. (4)

Finally,

V21 = ⟨ψ2|V ′ |ψ1⟩ = ⟨ψ1|V ′ |ψ2⟩∗ =
(α
a

)∗
=

α

a
(5)

The energy perturbations are the eigenvalues of this matrix

det(V − E I) = det

[
(α/a)− E α/a

α/a (α/a)− E

]
= E (E − 2α/a) = 0 .

(6)
The perturbed energies are, therefore

E1
a = 0 , E1

b =
2α

a
. (7)
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(QM2) A particle of mass m is bound in a harmonic 1D potential of the
form:

V (x) =
1

2
mω2x2

At time t = 0, the particle is in the following state:

|Ψ(0)⟩ = A
(
|0⟩+ 2 |2⟩

)
where A is a constant and |n⟩ is the nth energy eigenstate.

a. Find |Ψ(t)⟩ for all times t ≥ 0.

b. Determine the expectation value of the position (⟨x⟩) and momentum
(⟨p⟩) of the particle for all times t.

c. At time t = T , a measurement of the particle energy is made. Deter-
mine all possible outcomes of the measurement and their probabilities.

d. For the same particle in (c), assume that the measurement outcome is
the largest of the the possible outcomes. What will the the possible
measurement outcomes for the total energy of the particle for t > T?

Reminder: raising and lowering operators for harmonic potential are

â† =

√
mω

2ℏ
x̂− i

√
1

2ℏmω
p̂ , â =

√
mω

2ℏ
x̂+ i

√
1

2ℏmω
p̂

Solution:

(a) Normalization requires that the following condition is met:

1 = ⟨Ψ(0)|Ψ(0)⟩
= |A|2(⟨0|0⟩+ 2 ⟨2|0⟩+ 2 ⟨0|2⟩+ 4 ⟨2|2⟩)
= 5|A|2
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So,

A =
1√
5

(1)

The time dependent wave function is obtained by appropriately multiplying
the stationary states by their respective time dependent terms (e−iEnt/ℏ):

|Ψ(t)⟩ = 1√
5

(
e−iωt/2 |0⟩+ e−i5ωt/2 |2⟩

)
(2)

(b) The expectation values for position and momentum are:

⟨x⟩ = ⟨Ψ(t)| x̂ |Ψ(t)⟩ (3)

⟨p⟩ = ⟨Ψ(t)| p̂ |Ψ(t)⟩ (4)

These expectation values are most easily calculated by expressing x̂ and p̂ in
terms of the ladder operators:

x̂ =

√
ℏ

2mω

(
â† + â

)
(5)

p̂ = i

√
ℏmω
2

(
â† − â

)
(6)

Looking at ⟨x⟩,

⟨x⟩ = ⟨Ψ(t)| x̂ |Ψ(t)⟩

=
1

5

√
ℏ

2mω

[
eiωt/2 ⟨0|+ 2ei5ωt/2 ⟨2|

] (
â† + â

) [
e−iωt/2 |0⟩+ 2e−i5ωt/2 |2⟩

]
=
1

5

√
ℏ

2mω

[
eiωt/2 ⟨0|+ 2ei5ωt/2 ⟨2|

] [
e−iωt/2 |1⟩+ 2

√
2e−i5ωt/2 |1⟩+

2
√
3e−i5ωt/2 |3⟩

]
After the application of the ladder operators, it is clear that each ket is
orthogonal to each bra in the calculation, so,

⟨x⟩ = 0 (7)

5



By a similar rationale,
⟨p⟩ = 0 (8)

(c) The state is a superposition of two eigenstates which correspond to two
possible measurement outcomes for total energy:

|0⟩ → E = ℏω/2 (9)

|2⟩ → E = 5ℏω/2 (10)

The probability of each potential is the square magnitude of the projection
onto the corresponding eigenstate:

E = ℏω/2 : P = | ⟨0|Ψ(T )⟩ |2 = 1/5 (11)

E = 5ℏω/2 : P = | ⟨2|Ψ(T )⟩ |2 = 4/5 (12)

(d) The measurement at t = T collapses the wave function to |Ψ(t)⟩ =
e−i5ωt/2 |2⟩ for t > T . Therefore, all subsequent measurements of total energy
will yield E = 5ℏω/2.
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(QM3) A beam of particles (i.e. a plane wave state) is traveling in the +x
direction from x = −∞ with energy E and mass m. The beam of particles
is incident on the step potential of height V0 where V0 = 2E. The wave
functions cannot be normalized, so assume the incident plane wave has an
amplitude A.

a. Determine the wave function for all x that describes the effect of the
step potential on the incident beam.

b. Determine the position, d at which the probability density of detecting
particles decreases by a factor of 10 from the probability density at
x = 0.

c. Determine the reflection coefficient of the potential. Justify your answer.

Solution:

(a) In the region x < 0, the time-independent Scrhödinger equation is:

−ℏ2

2m

d2ψ

dx2
= Eψ (1)

which has the general solution,

ψ(x) = Aeikx +Be−ikx (2)

where k =
√
2mE/ℏ. Here the first term corresponds to the incident beam

and the second is the reflected beam.
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In the region x > 0, the time-independent Scrhödinger equation is

−ℏ2

2m

d2ψ

dx2
= (E − V0)ψ (3)

−ℏ2

2m

d2ψ

dx2
= (−E)ψ (4)

(5)

which has the general solution,

ψ(x) = Ce−κx +Deκx (6)

where κ =
√
2mE/ℏ. Because the second term diverges as x → ∞, it is

unphysical and thus D = 0.

From the continuity of ψ and dψ/dx at x = 0, we have:

A+B = C (7)

A(ik) +B(−ik) = C(−κ) (8)

Using these boundary conditions, B and C can be expressed in terms of A:

B = A
ik + κ

ik − κ
(9)

C = A
2ik

ik − κ
(10)

So, the full solution is:

ψ(x) = A

{
eikx + ik+κ

ik−κ
e−ikx , x ≤ 0

2ik
ik−κ

e−κx , x ≥ 0
(11)

(b) The probability density for detecting a particle at x = 0 is:

p(x) = |ψ(x)|2 (12)

At x = 0, the probability density is p(0) = |C|2. Therefore, we need to find
x0 such that p(x0) = |C|2/10.
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Using the wave function from part (a), we get the following equation:

|C|2

10
= |Ce−κx|2 (13)

Solving for x yields:

x =
ℏ ln 10√
23mE

(14)

(c) Because the potential step is infinitely long, the particles will never tunnel
through it and the reflection coefficient must be R = 1. This can be directly
calculated from the wavefunction:

R =
|B|2

|A|2
=

∣∣∣∣ ik + κ

ik − κ

∣∣∣∣2 = 1 (15)
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(EM1) A circular cylinder bar magnet of radius a, length l, and uniform

magnetization M⃗ is pushed toward a circular loop of radius b and self-
inductance L. The magnet remains at distances s far from the loop: s ≫
a, b, l. The loop is a perfect conductor. Initially, the magnet is at s → ∞
and there is no current in the loop.

a. In the configuration shown in Figure (a), find the magnetic flux through
the loop when the bar magnet is at the distance s (s≫ a, b, l).

b. In the configuration shown in Figure (a), what is the direction of the
induced current in the loop when the bar magnet moves toward the
circular loop?

c. Find the magnitude of the induced current as a function of s, when the
bar magnet is moving towards the loop from infinity.

d. What is the current in the loop if the orientation of the bar magnet is
different, as shown in Figure (b)?

Solution:
(a.) Given that s ≫ a, b, l, the magnetic field by the bar magnet at the
location of the loop can be evaluated as the magnetic dipole field,

B⃗dip =
µ0m

4π

3m̂ · r̂ − m̂

r3
, (1)

where m = πa2lM is the magnetic dipole moment, r is the distance of the
loop to the magnetic dipole, m̂ is the direction of the dipole, and r̂ is the
direction of the separation vector of the loop with respect to the dipole
moment. In the configuration of (a), we may take M⃗ =Mẑ, and the loop in
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the xy plane. It is seen m̂ ⊥ r̂, and r = s, hence the magnetic field B⃗dip at
the location of the loop is given by

B⃗dip = −µ0πa
2lM

4πs3
ẑ. (2)

The total flux through the loop is therefore

Φ = B⃗dip · πb2ẑ = −µ0π
2b2a2lM

4πs3
, (3)

the negative sign indicating that the dipole field is in −ẑ direction.

(b.) As the bar magnet moves towards the loop, the flux through the loop
increases, according to Lenz’s law, the induced current will be in the direction
that tends to reduce the (negative) flux by generating (positive) flux of the
opposite sign; so the direction of the current is counter-clockwise as viewed
from above the loop.

(c.) From Faraday’s law, the induced current in the loop follows the relation

L
dI

dt
= −dΦ

dt
. (4)

Integrate both sides of the equation, we arrive at

L(I − I0) = −Φ(s) + Φ(∞), (5)

where I0 = 0 is the initial current, and Φ(∞) = 0 is the flux through the loop
initially when the bar magnet is at infinity. Therefore, we find the induced
current as a function of the distance s,

I =
µ0π

2b2a2lM

4πLs3
. (6)

(d.) In the configuration of (b), the dipole field by the bar magnet is in the
plane of the loop, so the magnetic flux through the loop is zero. As the bar
moves toward the loop, there is no change of the magnetic flux through the
loop. Therefore, there is no induced current in the loop.
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(EM2) A spherical shell surrounds a central point charge at the origin. The
graph represents the electric field as a function of distance from the origin.
From the graph determine (and argue your answers):

(a) The approximate value of the point charge at the origin;

(b) whether the shell is metallic or dielectric;

(c) whether the shell is grounded or not;

(d) the total charge on the shell;

(e) distribution of charge on the shell, make a sketch.

The vertical scale is in terms of E0 = 3 · 104 (SI units) and the Coulomb
constant k = 1/4πε0 = 9 · 109 (SI units).

Solution:

Let’s denote inner and outer radii of the shell as

r1 = 0.025m , r2 = 0.03m ,

the central charge inside Q0, and total charge on the shell is Qs.

(a) The field inside the shell follow inverse square law,

E(r) = k
Q0

r2

4



and we can evaluate Q0 using any point, for example right at inner
radius r = r1 − 0:

Q0 =
0.2E0r

2
1

k
≈ 0.42× 10−9Coulomb

(b) the shell is metallic, because the field in the shell’s wall r1 < r < r2 is
zero;

(c) the shell is not grounded, otherwise the potential and field outside would
be zero;

(d) On the outside the field is given by the full enclosed charge (inside a
Gaussian surface) that is sum of the central charge and total charge on
the shell:

E(r) = k
Q′

r2
, Q′ = Q0 +Qs .

We evaluate the full charge by using value of the field right outside the
shell:

Q0 +Qs =
0.6E0r

2
2

k
,

and we’ll express it in terms of the central charge:

Qs

Q0

+ 1 =
0.6r22
0.2r21

≈ 4.33 ,

so the total charge on the shell is

Qs ≈ 3.33Q0 = 1.38× 10−9Coulomb

(e) charge on the shell has −Q0 distributed uniformly over 4πr21 area on the
inner surface, and Q′ = 4.33Q0 uniformly spread over 4πr22 on the outer
surface. We can write the overall charge density, including the central
charge, as

ρ(r) = Q0δ
3(r) +

−Q0

4πr21
δ(r − r1) +

4.33Q0

4πr22
δ(r − r2)
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(EM3) A parallel capacitor is made of two metal plates of area A separated
by distance d. It is charged with ±Q. A dielectric slab of thickness b (b < d)
and dielectric constant ϵr(≡ ϵ/ϵ0) > 1 is placed in between the plates, as
shown in the figure.

(a) Sketch field lines of E⃗ (electric field), D⃗ (displacement field), and P⃗
(polarization) everywhere in the capacitor.

(b) Find the capacitance C of the capacitor – ignore edge effects. What is
C at the limit b = 0 and b = d, respectively?

(c) Suppose that we first charge the capacitor to ±Q using a battery with-
out the slab in place. We then remove the battery and slide the slab
into place. Find the work done by the electric field to polarize the slab.
Is this work positive or negative?

(d) If, on the other hand, the capacitor stays connected to the battery (of
fixed voltage V ) all the times, is the total electric field energy in the
capacitor increased or decreased after the dielectric slab is placed in the
capacitor? Explain why.

Solution:
(a) Without the dielectric material, the electric field E⃗ inside the capacitor
is uniform and points from the top plate to the bottom plate. The dielectric
material placed inside the capacity will be polarized, and the uniform po-
larization P⃗ inside the material will be in the same direction of the electric
field, pointing downward. As a result, surface bound charges are produced
with negative/positive σb at the top/bottom of the material, which reduces

the electric field E⃗ inside but does not change the field outside the material.
The displacement field D⃗, however, is not affected by the polarization; it is
uniform and points from the top plate to the bottom plate.

(b) To compute the capacitance, we will find the potential difference between
the two plates, which is the path integral of the electric field. To find the

6



electric field inside the capacitor, we first find D⃗ from Gauss’s law, which
only depends on ±Q at the top and bottom plates.

D⃗ = −|σf |ẑ = −Q
A
ẑ. (1)

The electric field inside and outside the material is therefore,

E⃗ =
1

ϵ
D⃗ = − 1

ϵrϵ0

Q

A
ẑ − (inside material),

E⃗ =
1

ϵ0
D⃗ = − 1

ϵ0

Q

A
ẑ − (outside material). (2)

The potential difference is therefore,

∆V = −
∫ d

0

E⃗ · ẑdz = 1

ϵrϵ0

Q

A
b+

1

ϵ0

Q

A
(d− b) =

Q

ϵ0A

[
b

ϵr
+ (d− b)

]
.(3)

And the capacitance is therefore

C =
Q

∆V
=

ϵ0A
b
ϵr
+ (d− b)

. (4)

We can check the solution at the two limits; when b = 0, C = (ϵ0A)/d,
exactly the capacitance without the material. When b = d, C = (ϵA)/d, as
expected.

(c) The work done by the electric field is the difference between the electric
field energy before and after the slab is placed in. The total electric field
energy inside the capacitor is given by

W =
1

2

Q2

C
. (5)

So the difference in the energy is

∆W =
1

2
Q2

(
1

C
− 1

C0

)
=

1

2

Q2b

ϵ0A

(
1

ϵr
− 1

)
< 0. (6)

The change in the energy is negative, so the electric field does positive work
to polarize the material – positive/negative bound charges moved in the
same/opposite direction of the electric field!
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(d) If on the other hand, the capacitor is connected to the battery with a
constant voltage V , the electric field energy is given by

W =
1

2
CV 2. (7)

After the slab is placed in, the capacitance increases, C > C0, so the total
energy increases. Electric field still does positive work to polarize the mate-
rial, but the battery is doing more work against the charges on the plates to
transport more free charges to the capacitor, and increases the total electric
field energy in the capacitor.

8



Department of Physics
Montana State University

Qualifying Exam

August, 2024

Day 4

Statistical and Thermal Physics

Exam ID

CM1 A−11

example.

as shown in this

on EVERY PAGE,

and your

problem number
Write the

• Show your work.

• Write your solutions on the blank paper
that is provided.

• Begin each problem on a new page.
Write on only one side.

• If you do not attempt a problem, please
turn in a blank sheet with your Exam
ID and the problem number.

• Turn your work in to the proctor. There
is a stack for each problem.

• Return all pages of this exam to the
proctor, along with any writing that
you do not wish to submit.

1



(ST1) Our goal is to find the equation of state of a white dwarf, which can
be well approximated as a zero-temperature Fermi gas of non-interacting
electrons. The equation of state is the relation between pressure P and the
electron number density ne, which follows a power-law relation P ∝ nΓ

e .
Our goal is to find the value of Γ. Suppose the white dwarf has volume
V and N electrons, so ne = N/V . The electrons can be approximated as
non-relativistic particles with its energy ϵ and momentum p = |p| related by
ϵ = p2/(2me).

(a). The Fermi energy ϵF is the maximum energy of an occupied electron
state when the system is in its ground state. Compute ϵF in terms of ne =
N/V . [Hints: The spherical geometry of the star plays no role here, so you
can use any geometry you like for the volume V – or none at all. If you are
unable to do the exact calculation, you may try to estimate the answer based
on the uncertainty principle. This will enable you to answer the rest of the
problem.]

(b). Find Et, the total energy of the system, and from it the averaged
energy per particle Et/N . How does Et/N scale with the volume V ?

(c). Find the power-law relation between pressure P vs density ne, and
the value of Γ. [Hint: You might find it convenient to find P in terms of Et

and V through the first law of thermodynamics.]

(d). Argue why we can focus only on electrons and ignore the pro-
ton/neutron contribution to the pressure.

Solution:

(a). The number density of particles over phase space can be written as

n(p, x)d3pd3x = fgs
4π

h3
p2dpdV, (1)

where f is the occupation number per state and gs is the degeneracy of each
state (gs = 2 for spin-1/2 electrons). For zero-temperature Fermi gas, the
occupation is simply given by

f =

{
1, for p ≤ pF ,

0, for p > pF ,
(2)
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where pF is the Fermi momentum and for non-relativistic electrons, it is
related to the Fermi energy as

ϵF =
p2F
2me

. (3)

Integrating over the phase space should give us the total number of electrons
in the system, so we have the relation

N =

∫
n(p, x)d3pd3x = 4πgs

V

h3

∫ pF

0

p2dp,

=
4π

3
gs
V p3F
h3

=
4π

3
gs
V (2meϵF )

3/2

h3
. (4)

Thus,

ϵF =
h2

2me

(
3

4πgs
ne

)2/3

=
ℏ2

2me

(
6π2

gs
ne

)2/3

. (5)

Or in terms of pF ,

pF = h

(
3

4πgs
ne

)1/3

= ℏ
(
6π2

gs
ne

)1/3

. (6)

Or simply using the uncertainty principle,

pF ∼ h

∆x
≃ hn1/3

e , (7)

where ∆x is the typical spacing between electrons, N(∆x)3 ∼ V , and ϵF =

p2F/(2me) ∝ n
2/3
e .

(b). The total energy

Et =

∫
n(p, x)

p2

2me

d3pd3x =
4πgsV

2meh3

∫ pF

0

p4dp,

=
4πgsV

5h3
p3F

p2F
2me

,

=
3

5
N

p2F
2me

=
3

5
NϵF . (8)

The averaged energy per electron is

Et

N
=

3

5
ϵF ∝ V −2/3. (9)
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Or an order of magnitude estimation, Et/N ∼ ϵF ∝ V −2/3.

(c). The most convenient way to get the pressure is to use thermodynamic
identity

P = −∂Et

∂V
= −2

3

Et

V
=

2

5
neϵF ∝ n5/3

e , (10)

so Γ = 5/3.

Or from estimation, as long as one notices P ∼ neϵF , it would also lead
to the correct answer P ∝ n

5/3
e .

(d). Note P ∼ neϵF ∝ m−1
e . Since proton massmp ≫ me, its contribution

to the degenerate pressure is smaller by a factor of me/mp.
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(ST2) A system of N non-interacting magnetic dipole moments in external
magnetic field has the energy

Emag = −
N∑
i=1

µi ·B ,

where all magnetic moments have the same magnitude |µi| = µ, but can
point in arbitrary direction on the unit sphere. Treating magnetic moments
as classical, take µi ·B = µB cos θi where θi ∈ [0, π] is the angle relative to
the direction of the external field B.

(a) Calculate the canonical partition function of a single magnetic moment
in magnetic field Zmag

1 (T,B), in equilibrium with thermostat T , and use
it to find partition function of all N moments Zmag

N (T,B); (You can use
limit kBT ≫ µB to simplify your calculations and answers);

(b) Find the contribution from magnetic degrees of freedom to the entropy
S(T,B) in the limit kBT ≫ µB, leave only the first non-trivial term;
assume the entropy of the system without magnetic degrees of freedom
is known S(T, 0) = S0(T );

(c) Show that during an adiabatic process when magnetic field is reduced
to zero, B → 0, the magnetic material is cooled.

Solution:

(a) Partition function of one magnetic moment is obtained by integrating
over all configurations of the system (orientation angles of the moment
in this case), with the usual exponential weight factor:

Zmag
1 =

∫∫
dΩ

4π
e−Emag/T =

1

4π

∫ 2π

0

dϕ

∫ π

0

sin θdθ eµB cos θ/T =
sinh(µB/T )

(µB/T )

The partition function for the N independent moments is

Zmag
N = [Zmag

1 ]N ≈

[
1 +

1

3!

(
µB

T

)2
]N
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where we used Taylor expansion

sinhx = x+
x3

3!
+ . . .

Note that if one doesn’t remember hyperbolic functions, one can use
the approximate limit and calculate Zmag

1 integral with u = cos θ sub-
stitution:

Zmag
1 =

1

2

∫ π

0

sin θdθ eµB cos θ/T =
1

2

∫ +1

−1

du e(µB/T )u

≈ 1

2

∫ +1

−1

du

(
1 +

µB

T
u+

1

2!

µ2B2

T 2
u2 + . . .

)
= 1 +

1

3!

µ2B2

T 2
+ . . .

(b) The free energy for magnetic degrees of freedom is

Fmag = −T lnZmag
N ≈ −Nµ2B2

6T

and the entropy is

Smag = −∂F
mag

∂T
= −N

6

µ2B2

T 2

with total entropy being

S(T,B) = S0(T )−
N

6

µ2B2

T 2

Note, magnetic field reduces entropy by aligning magnetic moments into
an ordered state.

(c) Consider now reducing field to zero adiabatically. In an adiabatic pro-
cess the entropy is constant: S(Ti, B) = S(Tf , 0) ⇒

S0(Ti)−
N

6

µ2B2

T 2
i

= S0(Tf ) ⇒ S0(Tf )− S0(Ti) = −N
6

µ2B2

T 2
i

The difference is negative, S0(Tf ) < S0(Ti). Since entropy is an increas-
ing function of temperature, this implies Tf < Ti.
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(ST3) An air conditioner works by circulating a working fluid, which we
can approximate as an ideal gas, through a closed cycle of four steps: A–D.
In step A the fluid is at the same temperature as the indoor air, Tin, and
gains heat from it; this removes heat from the air. In step B, the fluid is
adiabatically compressed at entropy SB up to the temperature of the outside
air: Tout > Tin. The working fluid then exchanges heat with the outside air
at Tout (step C), and finally is adiabatically returned (step D), at entropy
SD, to its original state at Tin, and the same volume with which it began the
cycle.

a. Draw a diagram in T vs. S space of the working fluid undergoing one
complete cycle. Label each of the steps A–D described above on the
diagram. State which step (or steps) require(s) a motor to do positive
work on the working fluid.

b. In terms of Tin, Tout, SB and SD, compute the heat removed from the
indoor air in step A.

c. Compute the net work done by the motor on the fluid over one com-
plete cycle. Assume it works perfectly by recovering all the work done
on it by the fluid.

d. Outside is a toasty Tout = 35◦, while indoors is kept at a pleasant
Tin = 20◦. It is a perfect system (i.e. part c.) in which the motor draws
an averaged power of 1000 W. At approximately what average rate is
the air conditioner removing heat from the indoor air?

Solution:

a. The cycle consists of two isothermal legs, A and C, and two adiabatic
legs, B and D. The cycle thus forms a rectangle in T vs. S space (see
below). Leg A goes along Tin, and since heat is added to it,
SB > SD. The cycle proceeds counterclockwise — the sense opposite of
the traditional Carnot heat engine.
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C

T

SS S

T

T
in

out

D B

D

B

A

For an ideal gas undergoing isothermal heating, dE = CvdT = 0, so

dS =
p

T
dV = NR

dV

V
. (1)

Therefore compression, dV < 0, is accompanied by an entropy decrease,
dS < 0, as in leg C. For an adiabatic process, dS = 0, so the work done
on the fluid is

dW = − pdV = dE = Cv dT . (2)

This means compression generates increasing T , as in leg B. Thus
positive work is being done on the working fluid, by some motor, along
legs B and C.

b. Differential heating is dQ = T dS, so the heat exchanged along leg A is
found from the integral

∆QA =

∫
A

T dS = Tin

∫
A

dS = Tin (SB − SD) . (3)

c. Since the working fluid returns to its initial state,
∮
dE = 0 after a

complete cycle, and the net work done on the fluid is

W = −
∮
p dV = −

∮
T dS = −

∫
A

T dS −
∫
C

T dS

= −Tin (SB − SD) − Tout (SD − SB) (4)

= (Tout − Tin) (SB − SD) ,
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which is the area inside the rectangle on the T vs. S diagram.

d. Over a single cycle the ratio of heat removal to work

∆QA

W
=

Tin
Tout − Tin

, (5)

depends only on the temperatures of legs A and C. Averaging over
whole cycles gives the heating rate〈

dQA

dt

〉
=

Tin
Tout − Tin

〈
dW

dt

〉
=

293K

15K
× 1000W

≃ 20, 000W , (6)

for the values quoted. To do this one must convert Tin = 20◦C = 293K.
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